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2
Language Evolution and Change3

4 Morten H. Christiansen and Rick Dale

5 Introduction
6 No direct evidence remains from before the emergence of writing
7 systems to inform theories about the evolution of language. Only
8 as evidence is amassed from many different disciplines can theo-
9 rizing about the evolution of language be sufficiently constrained
10 to remove it from the realm of pure speculation and allow it to
11 become an area of legitimate scientific inquiry. To go beyond ex-
12 isting data, rigorously controlled thought experiments can be used
13 as crucial tests of competing theories. Computational modeling has
14 become a valuable resource for such tests because it enables re-
15 searchers to test hypotheses about specific aspects of language evo-
16 lution under controlled circumstances (Cangelosi and Parisi, 2002;
17 Turner, 2002). With the help of computational simulations, it is
18 possible to study various processes that may have been involved
19 in the evolution of language, as well as the biological and cultural
20 constraints that may have shaped language into its current form
21 (see EVOLUTION AND LEARNING IN NEURAL NETWORKS).
22 Connectionist models have played an important role in the com-
23 putational modeling of language evolution. In some cases, the net-
24 works are used as simulated agents to study how social transmis-
25 sion via learning might give rise to the evolution of structured
26 communication systems. In other cases, the specific properties of
27 neural network learning are enlisted to help illuminate the con-
28 straints and processes that may have been involved in the evolution
29 of language. This article surveys this connectionist research, start-
30 ing from the emergence of early syntax and continuing to the role
31 of social interaction and constraints on network learning in sub-
32 sequent evolution of language and to linguistic change within ex-
33 isting languages.

34 Emergence of Simple Syntax

35 Models of language evolution focus on two primary questions: how
36 language emerged, and how languages continue to change over
37 time. An important feature of the first question is the emergence of
38 syntactic communication. Cangelosi (1999) studied the evolution
39 of simple communication systems, but with an emphasis on the
40 emergence of associations not only between objects (meaning) and
41 symbols (signal), but also between the symbols themselves (syn-
42 tax). In particular, the aim was to demonstrate that simple syntactic
43 relations (a verb-object rule) could evolve through a combination
44 of communicative interactions and cross-generational learning in
45 populations of neural networks.
46 In Cangelosi’s simulations, populations of networks evolved
47 based on their ability to forage in an environment consisting of a
48 two-dimensional 100 ! 100 array of cells. About 12% of the cells
49 contained randomly placed mushrooms that served as food. Three
50 types of mushrooms were edible, increasing a network’s fitness if
51 collected, whereas another three types were poisonous, decreasing
52 the network’s fitness if collected. The networks had a standard
53 feed–forward architecture with a single hidden unit layer and were
54 trained using backpropagation (see BACKPROPAGATION: GENERAL

55 PRINCIPLES AND ISSUES FOR BIOLOGY). Input was represented in
56 terms of three sets of input units encoding the location of a mush-
57 room, the visual features of the mushroom, and words naming ob-
58 jects or actions. The output contained sets of units representing
59 actions (approach, avoid, discriminate) and words with the latter
60 units organized into two winner-take-all clusters (object and verb).
61 Populations consisted of 80 networks, each with a life span of 1,000
62 actions. The 20 networks with the highest fitness level were se-
63 lected for asexual reproduction, each producing four offspring
64 through random mutation of 10% of its starting weights. During
65 the first 300 generations, the populations evolved an ability to dis-
66 criminate between edible and poisonous mushrooms without the
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67 use of words. In subsequent populations, parents provided teaching
68 input for the learning of words denoting the different mushrooms
69 (objects) and the proper action to take (verbs). The simulations
70 were repeated with different random starting populations. Sixty-
71 one percent of the simulations resulted in optimal vocabulary ac-
72 quisition, with different “verb” symbols used with edible (ap-
73 proach) and poisonous (avoid) mushrooms, and different “noun”
74 symbols used for the different types of mushrooms.
75 The simulations indicate how a simple noun-verb communica-
76 tion system can evolve in a population of networks. Because the
77 features of a mushroom were perceived only 10% of the time, pay-
78 ing attention to the parental language input provided a selective
79 advantage with respect to foraging, thus reinforcing successful lin-
80 guistic performance.
81 Another approach to the emergence of elementary syntax has
82 been offered by Batali (1998). He suggested that a process of ne-
83 gotiation between agents in a social group may have given rise to
84 coordinated communication. Whereas Cangelosi’s model involved
85 the emergence of rudimentary verb-object syntax in a foraging en-
86 vironment, Batali’s networks were assigned the task of mapping
87 meaning onto a sequence of characters for the purpose of com-
88 munication in a social environment. The networks in this simula-
89 tion did not start out with a predetermined syntactic system. In-
90 stead, a process of negotiation across generations engendered the
91 evolution of a syntactic system to convey common meanings.
92 Each agent in the simulation was a simple recurrent network
93 (SRN; Elman, 1990), capable of processing input sequences con-
94 sisting of four characters and producing an output vector repre-
95 senting a meaning involving a subject and a predicate. In a nego-
96 tiation round, one network was chosen as a learner, and ten
97 randomly selected teachers conveyed a meaning converted into a
98 string of characters. The learner then processed the string produced
99 by the teacher, and was trained using the difference between the
100 teacher’s and the learner’s meaning vectors. Batali described this
101 interaction between learners and teachers as a kind of negotiation,
102 since each must adjust weights in accordance with its own cogni-
103 tive state and that of others. At the start of the simulations the
104 networks generated only very long strings that were unique to each
105 meaning. After several thousand rounds of negotiation, the agents
106 developed a more efficient and partially compositional communi-
107 cation system, with short sequences of letters used for particular
108 predicates and referents. To test whether novel meanings could be
109 encoded by the communication system, Batali omitted ten mean-
110 ings, and reran the simulations. After training, networks performed
111 well at sending and processing the omitted meaning vectors, dem-
112 onstrating that the rudimentary grammar exhibited systematicity
113 that accommodated a structured semantics.
114 Batali’s model offers illuminating observations for the evolution
115 of language. An assumption of this model was that social animals
116 can use their own cognitive responses (in this case, translating
117 meaning vectors into communicable signals) to predict the cogni-
118 tive state of other members of their community. Batali compared
119 this ability to one that may have arisen early in hominids and con-
120 tributed to the emergence of systematic communication. Once such
121 an elementary communication system is in place, migration pat-
122 terns may have promoted dialectical variations. The next section
123 explores how linguistic diversity might arise as a result of geo-
124 graphical separation between groups of communicating agents.

125 Linguistic Diversity

126 The diversity of the world’s many languages has offered puzzling
127 questions for centuries. Computational simulations allow for the
128 investigation of factors influencing the distribution and diversity of
129 language types. An intuitive approach, considered in this section,
130 is that languages assume an adaptive shape governed by various
131 constraints in the organism and environment. Livingstone and Fyfe
132 (1999) have proposed an alternative perspective based on simula-
133 tions in which linguistic diversity arises simply as a consequence
134 of spatial organization and imperfect language transmission in a
135 social group.
136 The social group in the simulation consisted of networks with
137 two layers of three input and output units, bidirectionally connected
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138 and randomly initialized. As in Batali’s simulations, agents were
139 given the task of mapping a meaning vector onto an external “lin-
140 guistic” signal. For each generation, a learner and a teacher were
141 randomly selected. The output of the teacher was presented to the
142 learner, and the error between meaning vectors was used to change
143 the learner’s weights. Each successive generation had agents from
144 the previous generation acting as teachers. The agents were spa-
145 tially organized along a single dimension and communicated only
146 with other agents within a fixed distance. By comparing agents
147 across this spatial organization, performance akin to a dialect con-
148 tinuum was observed: small clusters of agents communicated read-
149 ily, but as the distance among them increased, error in communi-
150 cation increased. When the simulation was implemented without
151 spatial organization (i.e., each agent was equally likely to com-
152 municate with all others), the entire population quickly negotiated
153 a global language, and diversity was lost. This model supports the
154 position that diversity is a consequence of spatial organization and
155 imperfect cultural transmission.
156 The results of Livingstone and Fyfe’s as well as Batali’s simu-
157 lations may not rely directly on the properties of neural network
158 learning, but rather on the processes of learning-based social trans-
159 mission. However, when it comes to explaining why certain lin-
160 guistic forms have become more frequent than others, the specific
161 constraints on learning in such networks come to the fore. The next
162 section discusses how limitations on network learning can help
163 explain the existence of certain so-called linguistic universals.

164 Learning-Based Linguistic Universals

165 Despite the considerable diversity that can be observed across the
166 languages of the world, it is also clear that languages share a num-
167 ber of relatively invariant features in the way words are put together
168 to form sentences. Spatial organization and error in transmission
169 cannot account for these widespread commonalities. Instead, the
170 specific constraints on neural network learning may offer expla-
171 nations for these consistent patterns in language types. As an ex-
172 ample, we can consider heads of phrases, that is, the particular word
173 in a phrase that determines the properties and meaning of the phrase
174 as a whole (such as the noun boy in the noun-phrase the boy with
175 the bicycle). Across the world’s languages, there is a statistical
176 tendency toward a basic format in which the head of a phrase con-
177 sistently is placed in the same position—either first or last—with
178 respect to the remaining clause material. English is considered to
179 be a head-first language, meaning that the head is most frequently
180 placed first in a phrase, as when the verb is placed before the object
181 noun-phrase in a transitive verb phrase such as eat curry. In con-
182 trast, speakers of Hindi would say the equivalent of curry eat, be-
183 cause Hindi is a head-last language.
184 Christiansen and Devlin (1997) trained SRNs with eight input
185 and eight output units encoding basic lexical categories (i.e., nouns,
186 verbs, prepositions, and a possessive genitive marker) on corpora
187 generated by 32 different grammars with differing amount of head-
188 order consistency. The networks were trained to predict the next
189 lexical category in a sentence. Importantly, these networks did not
190 have built-in linguistic biases; rather, they were biased toward the
191 learning of complex sequential structure. Nevertheless, the SRNs
192 were sensitive to the amount of head-order inconsistency found in
193 the grammars, such that there was a strong correlation between the
194 degree of head-order consistency in a given grammar and the de-
195 gree to which the network had learned to master the grammatical
196 regularities underlying that grammar. The higher the inconsistency,
197 the more erroneous the final network performance was. The se-
198 quential biases of the networks made the corpora generated by con-
199 sistent grammars considerably easier to acquire than the corpora
200 generated by inconsistent grammars. Christiansen and Devlin fur-
201 ther collected frequency data concerning the specific syntactical
202 constructions used in the simulations. They found that languages
203 incorporating fragments that the networks found hard to learn
204 tended to be less frequent than languages the network learned more
205 easily. This suggests that constraints on basic word order may de-
206 rive from nonlinguistic constraints on the learning and processing
207 of complex sequential structure. Grammatical constructions incor-
208 porating a high degree of head-order inconsistency may simply be
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209 too hard to learn, and would therefore tend to disappear.
210 More recently, Van Everbroeck (1999) presented network sim-
211 ulations in a similar vein in support of an explanation for language-
212 type frequencies based on processing constraints. He trained re-
213 current networks (a variation on the SRN) to produce the correct
214 grammatical role assignments for noun-verb-noun sentences that
215 were presented one word at a time. The networks had 26 input
216 units, providing distributed representations of nouns and verbs as
217 well as encodings of case markers, and 48 output units, encoding
218 the distributed noun-verb representation according to grammatical
219 role. Forty-two different language types were used to represent
220 cross-linguistic variation in three dimensions: word order (e.g.,
221 subject-verb-object), and noun and verb inflection. The results of
222 the simulations coincided with many observed trends in the distri-
223 bution of the world’s languages. Subject-first languages, both of
224 which make up the majority of language types (51% and 23%,
225 respectively), were easily processed by the networks. Object-first
226 languages, on the other hand, were not well processed, and they
227 have very low frequency in the world’s languages (object-verb-
228 subject: 0.75%; object-subject-verb: 0.25%). Van Everbroeck ar-
229 gued that these results were a predictable product of network pro-
230 cessing constraints. Not all results, however, were directly
231 proportional to actual language-type frequencies. For example,
232 verb-subject-object languages account for only 10% of the world’s
233 language types, but the model’s performance on it exceeded per-
234 formance on the more frequent subject-first languages. Van Ever-
235 broeck suggested that making the simulations more sophisticated
236 (incorporating semantics or other aspects of language) might allow
237 network performance to better approach observed frequencies. To-
238 gether, the simulations by Van Everbroeck and by Christiansen and
239 Devlin provide preliminary support for a connection between learn-
240 ability and frequency in the world’s languages based on the learn-
241 ing and processing properties of connectionist networks. The next
242 section discusses additional simulations that show how similar net-
243 work properties may also help explain linguistic change within a
244 particular language.

245 Linguistic Change

246 The English system of verb inflection has changed considerably
247 over the past 1,100 years. Simulations by Hare and Elman (1995)
248 demonstrate how neural network learning and processing con-
249 straints may help explain the observed pattern of change. The mor-
250 phological system of Old English (ca. 870) was quite complex,
251 involving at least ten different classes of verb inflection (with a
252 minimum of six of these being “strong”). The simulations involved
253 several “generations” of neural networks, each of which received
254 as input the output generated by a trained net from the previous
255 generation. The first net was trained on data representative of the
256 verb classes from Old English. However, training was stopped be-
257 fore learning could reach optimal performance. This reflected the
258 causal role of imperfect transmission in language change. The im-
259 perfect output of the first net was used as input for a second gen-
260 eration net, for which training was also halted before learning
261 reached asymptote. Output from the second net was then given as
262 input to a third net, and so on, until seven generations were trained.
263 This training regime led to a gradual change in the morphological
264 system. These changes can be explained by verb frequency in the
265 training corpus, and internal phonological consistency (i.e., dis-
266 tance in phonological space between prototypes). The results re-
267 vealed that membership in small classes, inconsistent phonological
268 characteristics, and low frequency all contributed to rapid morpho-
269 logical change. As the morphological system changed through gen-
270 erations in these simulations, the pattern of results closely resem-
271 bled the historical change in English verb inflection from a complex
272 past tense system to a dominant “regular” class and small classes
273 of “irregular” verbs.

274 Discussion

275 This article has surveyed the use of neural networks for the mod-
276 eling of language evolution and change. The results discussed here
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277 are encouraging, even though neural network modeling of language
278 evolution is very much in its infancy. However, it is also clear that
279 the current models suffer from obvious shortcomings. Most of them
280 are highly simple and do not fully capture the vast complexity of
281 the issues at hand. For example, the models of the emergence of
282 verb-object syntax and linguistic diversity incorporated very simple
283 relationships between meaning and form. Moreover, although the
284 simulations of the influence of processing constraints on the shape
285 of language involved relatively complex grammars, they did not
286 include any relationship between the language system and the
287 world. Nevertheless, these models demonstrate the potential for
288 exploring the evolution of language from a computational perspec-
289 tive.
290 Both connectionist and nonconnectionist models (e.g., Nowak
291 and Komarova, 2001) have been used to provide important thought
292 experiments in support of theories of language evolution. Connec-
293 tionist models have become prominent in such modeling, both for
294 their ability to simulate social interaction in populations and for
295 their demonstrations of how learning constraints imposed on com-
296 munication systems can engender many of the linguistic properties
297 we observe today. Together, the models point to an important role
298 for cultural transmission in the origin and evolution of language.
299 This perspective receives further support from neuroscientific con-
300 siderations, suggesting a picture of language and brain that argues
301 for their co-evolution (e.g., Deacon, 1997). The studies discussed
302 here highlight the promise of neural network approaches to these
303 issues. Future studies will likely seek to overcome current short-
304 comings and move toward more sophisticated simulations of the
305 origin and evolution of language.

306 Roadmap: Linguistics and Speech Processing; Neuroethology and Evo-
307 lution
308 Background: Language Processing
309 Related Reading: Constituency & Recursion in Language; Evolution and
310 Learning in Neural Networks; Language Evolution, The Mirror System
311 Hypothesis
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