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Abstract We present a new R package, cmscu, which
implements a Count-Min-Sketch with conservative updat-
ing (Cormode and Muthukrishnan Journal of Algorithms,
55(1), 58–75, 2005), and its application to n-gram analyses
(Goyal et al., 2012). By writing the core implementation in
C++ and exposing it to R via Rcpp, we are able to provide a
memory-efficient, high-throughput, and easy-to-use library.
As a proof of concept, we implemented the computationally
challenging (Heafield et al., 2013) modified Kneser–Ney
n-gram smoothing algorithm using cmscu as the query-
ing engine. We then explore information density measures
(Jaeger Cognitive Psychology, 61(1), 23–62, 2010) from n-
gram frequencies (for n = 2, 3) derived from a corpus of
over 2.2 million reviews provided by a Yelp, Inc. dataset.
We demonstrate that these text data are at a scale beyond
the reach of other more common, more general-purpose
libraries available through CRAN. Using the cmscu library
and the smoothing implementation, we find a positive rela-
tionship between review information density and reader
review ratings. We end by highlighting the important use
of new efficient tools to explore behavioral phenomena in
large, relatively noisy data sets.
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Introduction

“Big data” collection and analysis are now at the forefront
of modern science and business, with daily data collec-
tion equal to that of 90 % of all data collected in the past
2 years (McAfee et al., 2012), which comprises over 2.7
zettabytes (1021 bits). Keeping pace with the scale and speed
of modern data collection necessitates the development of
computational tools capable of efficiently analyzing larger
and larger data sets. Hardware has rapidly evolved to enable
such large-scale computations; for example, the time to
assemble an entire human genome, just under one week,
once took two years (Sagiroglu & Sinanc, 2013). To maxi-
mize the utilization of modern hardware, however, calcula-
tions must typically be expressed in “low-level” languages
such as Fortran or C++, more or less directly exposing the
hardware to the programmer at the cost of code simplicity
and clarity. More expressive scripting languages such as R
and Python allow scientists to more directly express their
calculations and theories in a hardware-agnostic way, but
at the (sometimes significant) expense of code runtime and
not being able to immediately leverage the latest hardware
advances.

Because of this, tools that facilitate analysis of large
data sets could greatly accelerate research in behavioral sci-
ence. Many (if not most) behavioral scientists are trained
only in scripting languages and the relevant statistical pack-
ages. Thus the analysis of larger data sets falls to computer
scientists and engineers who often lack the background
and training in the behavioral sciences. Further integrat-
ing these fields through big data and analysis tools has
much promise within both research and applied domains.
For example, data sets continue to be released to the public
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with companies benefiting from ‘dataset challenges’ that
crowd source solutions to computational problems. Netflix
famously created a dataset challenge paying out one million
dollars to any team who could improve their current recom-
mendation system by 10 %. Yelp Inc. continues to release
more and more reviews from their database, and pays out
$5,000 to students who simply use the data in interesting
ways. In fact, there are entire websites dedicated to adver-
tising dataset challenges (e.g., Kaggle.com). The problem
is that behavioral science training rarely includes efficient
programming techniques to harness the raw power of these
larger data sets, often sacrificing computational efficiency
for ease of programming. In order to obtain insights from
larger data sets, behavioral scientists—with their important
domain-specific knowledge—must be able to engage with
ever larger data sets in a meaningful way.

The scripting language R is the preferred computational
and statistical language of many behavioral scientists, hav-
ing rich documentation and an accessible programming
environment. However, it is not very performant relative to
other solutions (Simmering, 2013). Nonetheless, the use of
high-level scripting languages, and in particular R, has been
encouraged for many current and past research agendas.
Historically, this has not been a problem as the size of one’s
data set and complexity of analyses have typically been
guided by highly controlled experimental paradigms. Such
data sets require very little computational power to uncover
phenomena from few participants. However, the increasing
size and number of freely available data sets, as well as the
desire to provide ecologically valid results (Roy et al., 2015;
Lazer et al. 2009), challenges the efficacy of this trade-
off. Indeed, being capable of harnessing large data sets will
also help to accommodate the current needs of the behav-
ioral sciences, such as openness and replicability (Nosek
et al., 2012; Schmidt, 2009; Pashler & Wagenmakers, 2012;
Zwaan & Pecher, 2012), without loss of scientific produc-
tivity (Ramscar et al., 2015). This new demand requires new
tools that can be easily implemented by behavioral scientists
trained to uncover interesting behavioral phenomena.

In this paper, we introduce the application of a promi-
nent data-reduction technique for handling massive amounts
of text. This technique permits efficient approximation of
text information from a very large corpus. The R library
we introduce, cmscu, could thus open new avenues of
analysis for behavioral scientists, but the library and its
application also recommend some broad methodological
lessons. We aim to elucidate three key methodological
observations. First, in “R-package cmscu”, we describe
how so-called “sketch” techniques help process large
amounts of data while efficiently using memory resources
and argue these are critical for the coming ‘big data’
age in the behavioral sciences (Griffiths, 2015). Next, in
“Information-Theoretic structure of yelp reviews”, we

demonstrate a fruitful domain in which such a strategy
can apply—the Information-Theoretic analysis of language
structure in corpora. As an example, due to the efficiency
now available with cmscu, we quantify the structure of
a language using the sophisticated modified Kneser–Ney
smoothing algorithm (Kneser & Ney, 1995). Finally, using
a dataset from Yelp, Inc., we show that our library and
its use in implementing sophisticated Information-Theoretic
algorithms permit wide ranging exploration of the statisti-
cal properties of language use and its relationship to other
behavioral phenomena. In the “General discussion”, we
revisit important messages about cross-disciplinary interac-
tions and suggest that adopting a wide range of tools from
various disciplines can help to ensure that behavioral scien-
tists find efficient solutions for their problems, while giving
computational scientists and engineers exciting behavioral
problems in which to apply their research.

Here, we briefly motivate why adopting more efficient
techniques is crucial to maintaining the current pace of
progress in the behavioral sciences. To do this we demon-
strate its application in one of the most common quantitative
models of language: n-grams.

n-gram models of language The study of language is a
key topic in the psychological sciences, influencing and
being influenced by a whole host of psychological factors at
many scales including: vision (Tanenhaus et al., 1995), emo-
tion (Nygaard & Queen, 2008; Pennebaker et al., 2001;
Pennebaker, 1997; Jurafsky et al., 2014; Kahn et al., 2007),
the community (Vinson & Dale, 2016; Lupyan & Dale,
2010), individuals who make up that community (Nygaard
et al., 1994; Nygaard & Pisoni, 1998; Bradlow et al., 1999),
gender and social status (Labov, 1972b; 1972a; Kuhl et al.,
1992; Lindblom, 1990) and of course much more. n-gram
models represent one of the earliest and most-used tools to
uncover the statistical structure of language use. In its most
basic form, an n-gram is a sequence of n items from a given
collection of text, transcribed speech, genomic data, and so
on (Li et al., 2001). Having originated in the early 20th cen-
tury (Markov, 1913), the resurgence of n-gram models in
language analysis came about in the mid 1970s and 1980s
from their successful use in speech recognition systems
(Jelinek, 1976; Baker, 1975; Bahl et al., 1983; Martin &
Jurafsky, 2000). Such systems were heavily influence by the
work of Claude Shannon whose proposed theory of commu-
nication, Information Theory (Shannon, 1948), is among the
most influential frameworks of the 20th century. Shannon’s
key examples of Information Theory involved a n-gram
analysis of written English. Information Theory posits that a
word carries some amount of information, measured in bits,
proportional to its − log2 probability of occurrence given
some “context” (e.g., a corpus of words):

I (wi) = − log2 p(wi |w1, w2, ...wi−1). (1)
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In Eq. 1 above, the number of bits in word I (wi) is depen-
dent on the frequency of its occurrence after some other
word(s), or its maximum likelihood estimate. In the behav-
ioral and computational sciences, this measure and related
measures are very useful for exploring language production
and processing. However, computing reliable estimates of
these measures requires the analysis of massive amounts of
text. In addition, it may be very useful to compute these
measures over ad hoc data sets of psychological relevance
(e.g., education, business, etc.). Doing so requires flexi-
ble tools that allow behavioral researchers to estimate such
measures in their existing computational environment. This
would greatly enhance the availability of such Information
Theory concepts.

Currently, programs and methods used by psychologists,
specifically the tm package in R, do not scale well with
increasingly large data sets or longer n-grams, thus leav-
ing a powerful tool out of reach. Below we detail the
development and use of a new n-gram package, cmscu,
developed in part to analyze a large Yelp, Inc. dataset
previously intractable with the standard tm package and
its DocumentTermMatrix object in R. Following its
description, we provide the results of an n-gram analy-
sis motivated by current and ongoing research surrounding
Information Theory.

R-package cmscu

The analysis of n-grams requires two fundamental opera-
tions: store and query. Given an n-gram ω, we must be able
to store and update the count associated with ω, store(ω),
and query the same count, query(ω). There are many pos-
sible ways to implement such functionality; however, the
large nature of our intended dataset limits the feasibility of
most standard approaches. In order to be fast, the data struc-
ture (or at least its “active parts”) should be able to reside
entirely within local memory (RAM). This means that we
cannot fully store the actual n-grams themselves, but rather
a compressed representation of them.

The need for compression suggests a hash table imple-
mentation, “compressing” strings by representing them as
a single integer computed from the string itself (Cormen,
2009). For example, we may use a look-up table for a tri-
gram such as the cannibal consumes by referencing
a single integer—an index in an array—thus saving sig-
nificant space in the frequency table. However, such hash
tables store the string itself along with its associated data
in order to resolve possible hash collisions, where two
distinct strings map to the same integer—a necessary con-
sequence of the mathematical pigeon-hole principle. As the
size of the corpus increases, the space required to store all
strings will exceed the size of RAM thus requiring swapping

memory from the hard disk, which is often the single largest
slowdown in large programs.

By relaxing the “correctness” of our stored value (in
a controlled way) a host of fast and efficient algorithms
become available. So-called streaming or sketch algorithms
rely on probabilistic guarantees of accuracy: in this frame-
work, query(ω) will return a value according to a confi-
dence interval rather than the fixed, precise number. We
chose the Count-Min-Sketch with conservative update pro-
cedure (CMS-CU) (Cormode & Muthukrishnan, 2005) for
its simplicity in implementation and its proven effective-
ness (Goyal et al., 2012). This approach has wide appli-
cations, and approximate or “sketch” algorithms in general
have become quite common in the realm of computational
and data science for summarizing and performing other
computations on massive and real-time data (Cormode &
Muthukrishnan, 2011), the most common example being the
conceptually related Bloom filter (Song et al., 2005). By
treating a corpus as a stream of text data, an approximate
algorithm such as Count-Min-Sketch can provide a estimate
of n-gram frequencies up to some desired accuracy depend-
ing on core parameters in the algorithm—namely the size
of the table that will provide the information for the esti-
mation of frequencies. This allows a researcher to choose
a balance between probabilistic guarantees and available
computational resources, effectively trading off statistical
power for the ability to study larger datasets on the same
hardware.

The CMS-CU sketch algorithm works in the following
way: rather than representing some n-gram in a traditional
hash table, containing an entry for each distinct n-gram,
the count data of the n-grams are tabulated in the stream
of text using a w-by-d table (“width and depth”). Every n-
gram receives an entry on each row of this table, and the
particular entry in each row is determined by a statistically
independent hash function. Storing an n-gram consists of
incrementing its associated value in each row by 1, while
querying it consists of taking the minimum of each asso-
ciated value. The conservative update limits the increment
to only those entries that equal the minimum value. The
fundamental idea is that if a collision of two strings under
one hash function is rare, the simultaneous collision of the
same two strings under two independent hash functions
is extremely rare. Thus, with additional rows, it becomes
increasingly unlikely that the minimum value assigned to an
n-gram will over-estimate the true count of its occurrence.

The hash collision probability (or rather, the probabil-
ity of colliding across all hash functions) is given in the
original Cormode and Muthukrishnan (2011) paper, and is
philosophically just a generalized birthday problem calcula-
tion. The more complicated calculation (and more pertinent)
is, however, the probability that the count associated with
a string is incorrect (too high). This could occur from a
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Table 1 Methods for cmscu

dict <- new(FrequencyDictionary, d, w) Initialize a dictionary with d rows (d = 4 gives > 98 % confidence) and w bins

dict$store(’string’) Update the frequency count associated with string ’string’

dict$store(c(’s1’, ’s2’, ...)) Update the counts associated with all of the strings simultaneously

dict$query(’string’) Query the (approximate) frequency count associated with ’string’

dict$query(c(’s1’, ’s2’, ...), n=1) Query the counts of all the strings simultaneously over n OpenMP threads (if available)

second string colliding across all the hash tables, but more
likely from multiple distinct strings each individually col-
liding on only a few hash tables, but collectively resulting
in a net increase over all the entries for the original string.
That this probability is bounded and easily estimated is
what makes (Cormode & Muthukrishnan, 2011) so notable
here. Below we present their confidence interval bounds.
Matching intuition, increasing the number of entries per
hash table achieves first-order reduction in the width of the
confidence interval, while increasing the number of hash
functions increases our confidence as 1 − e−d .

The memory utilization of this approach offers a signifi-
cant advantage—the storage of a string requires 1 byte per
character, thus (n + 1)-grams will take more space than n-
grams in memory. However, the Count-Min-Sketch offers a
fixed memory data structure—assuming 4 bytes per entry (a
32-bit integer), it will consume 4× w × d bytes in memory
independent of the dataset being studied. When used to esti-
mate probabilities (rather than integer counts), we have the
confidence interval

Pr [pi ≤ query(ωi)/N < pi + ε] > 1 − e−d , (2)

where N is the number of items stored (including repeats),
pi is the true empirical frequency of ωi and ε ≈ e/w ∝ 1/w
(Cormode & Muthukrishnan, 2005).

We implemented this algorithm in C++ using a reference
MurmurHash3 hash implementation coupled with a pair-
wise hashing optimization (Kirsch & Mitzenmacher, 2006),
and then exported our class to R via Rcpp (Eddelbuettel
et al., 2011). Writing the core implementation in C++ allows
for precise, efficient, and predictable memory utilization,
while the Rcpp binding allows for its convenient use via the
R scripting language.

Usage

The cmscu library has only a few methods that wrap the
entire functionality (see Table 1). We describe the three pri-
mary methods below, and refer the reader to the GitHub
page1 for the full documentation and package.

1http://www.github.com/jasonkdavis/r-cmscu.

Sample usage is given below:

dict <- new(FrequencyDictionary, 4, 106); # 4 is the
number of hash functions (d) and 106 is the width (w) #
Total size (in bytes) = 4 x w x d

bigrams <- c(’this is’, ’is sample’, ’sample usage’);
dict$store(bigrams);

test <- c(’this is’, ’not present’, ’sample usage’, ’this is’);
counts <- dict$query(test); # counts is c(1,0,1,1)

Comparison

We compare the application of our library to that of
the tm package (Meyer et al., 2008), a common text-
mining package in R. This package is frequently recom-
mended for the analysis of n-grams in R specifically for its
DocumentTermMatrix class, which counts the occur-
rences of each string-type per document and stores the
integer values into a large matrix. It is this functionality that
cmscu specifically offers an efficient alternative to—tm
also provides high quality text-processing utilities that we
do not attempt to replicate.

Perhaps unsurprisingly, by tailoring our data struc-
ture to the problem at hand, cmscu outperforms tm’s
DocumentTermMatrix by orders of magnitude in
the task of n-gram frequency analysis and informa-
tion density calculation. The reason for this is that the
DocumentTermMatrix solves a more general problem,
which requires the storage and organization of data unnec-
essary for our calculation and prevents a linear scaling in the
size of the corpus. While it is a powerful tool for document
classification, and bundles useful functionality for cleaning
and preparing raw strings, it is not optimal for the specific
task of n-gram information density computation (despite its
usefulness for such tasks with much smaller data sets).

We benchmark the creation, initialization, and evalua-
tion of increasingly large datasets (the first k lines from the
Yelp Inc. dataset) averaged over 10 runs in Fig. 1. We run
our CMS-CU implementation with 4 rows of 224 entries,
using a fixed 1GB of RAM for each run. For small data
sets, the cost associated with this unnecessarily large mem-
ory allocation outweigh the tm calculation; however, as we
approach 104 lines of the Yelp dataset, we are 18 times faster
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Fig. 1 Log-log plot of the calculation time of tm relative to the cal-
culation time of our package, averaged over ten runs, for increasingly
large data sets. Due to the nonlinear scaling of tm, our implementa-
tion becomes increasingly faster relative to tm as the dataset increases
in size. The memory requirements of tm prevented the comparison of
larger data sets

in total run-time. For larger sizes, we were unable to even
run the reference tm code due to the non-linear scaling in
its algorithmic complexity and memory use.

For a dataset of k lines, we compute k values with the
tm result being exact and our CMS-CU result being approx-
imate. We compute the root-mean-squared (RMS) error of
our calculation in Table 2, where

RMS(x, y) =
√
√
√
√

1

k

k
∑

i=1

(xi − yi)2. (3)

When k = 101 and k = 102, there is no difference
(machine precision) in the output due to our large allocation
which suggests the absence of any hashing collisions. As k

increases, collisions expectedly occur but the average infor-
mation density, − 1

n

∑n
i=1 log2p(wi), of a review maintains

a precision of 10−3. This could be improved by using addi-
tional rows in the CMS-CU structure (going from 4 to 6, for
example).

Table 2 Root-mean-squared error of CMS-CU output over increas-
ingly large datasets

k 101 102 103 104

RMS 2.22 × 10−16 4.31 × 10−16 7.30 × 10−3 8.75 × 10−3

Information-Theoretic structure of yelp reviews

The development of efficient n-gram storage and querying
techniques affords analyzing text using more sophisticated
algorithms. Standard practice involves training a model
on held out data and using it to predict test data. How-
ever, it is almost always the case that unseen n-grams will
occur in test data, resulting in poor model performance.
Applying smoothing techniques adjusts n-gram probabil-
ity estimates to help account for missing data and increase
model performance (i.e., decrease model perplexity).2 The
term ‘smoothing’ comes from the fact that these algorithms
tend to make the distribution more uniform by adjusting
low probabilities upward and high probabilities downward
(Chen & Goodman, 1999).

To date, the most accurate models estimate the maximum
likelihood of an n-gram using both higher- and lower-order
n-grams. Two types of models exist: (1) Back-off models
use lower order n-grams (such as bigrams and unigrams) to
estimate the maximum-likelihood of higher order n-grams
(such as trigrams), but only when data from the higher-
order n-gram is missing. Thus it backs off to the lower-order
(n − 1)-gram until the value is defined. (2) Interpolated
models use estimates from lower-order n-grams even when
higher-order n-grams are defined. Interpolated models are
defined recursively as a linear interpolation between the
nth-order maximum likelihood model and the (n − 1)-th
order smoothed model (Chen & Goodman, 1999, p. 364).
The most accurate interpolation models penalize higher- and
lower-order n-grams using a discount parameter for higher
n-grams and a smoothing parameter (often defined in part
by the count of the higher-order n-gram) on lower order n-
grams. It is reasonable to use both lower and higher-order
n-grams together when estimating higher-order n-grams
because the frequency of the (n − 1)-gram will typically
correlate with the n-gram and has the advantage of being
estimated from more data. For this reason, such models tend
to accurately estimate unseen data. Crucially, both types of
models use lower-order n-grams to estimate missing higher-
order n-grams (essentially interpolated models are back-off
models when n-grams are missing). Similarly, in the occur-
rence of zero count data, where wi is never seen (at any n-
or (n−1)-gram) the standard procedure across both models,
and one we adopt here, is to estimate its value via a uni-
form distribution, p0(wi) = 1/|v|, where |v| is the model’s
vocabulary (the number of unique 1-grams in the training
data).

2The accuracy of specific Information-Theoretic models on estimat-
ing unseen data that vary in the length of n or the complexity of the
algorithm can be determined by measuring its cross-entropy or more
specifically model perplexity (Bahl et al., 1983; Jelinek et al., 1977;
Jurafsky & Martin, 2000).
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At present, the most accurate smoothing technique is
a variation on what is known as Kneser–Ney smoothing
(Kneser & Ney, 1995). What makes Kneser–Ney smooth-
ing more accurate than other smoothing techniques is how
it estimates unigrams (1-grams). While other models simply
take the frequency of the unigram, Kneser–Ney smoothing
estimates this value based off how likely wi is to occur in an
unfamiliar context:

pKN(wi) = |{wi : 0 < c(wi−1, wi)}|
|{(wi−1, wi) : 0 < c(wi−1, wi)}| , (4)

where |{wi : 0 < c(wi−1, wi)}| is the total number
of bigrams wi completes, divided by the total number of
unique bigrams |{(wi−1, wi) : 0 < c(wi−1, wi)}|. A com-
mon example used to explain why this is a better estimate
of higher-order n-grams is to consider the unigram ‘Fran-
cisco’. Suppose ‘Francisco’ occurs frequently throughout
our dataset. However, it only ever occurs after the word
‘San’. Because it is unlikely to occur in any other bigram
context, its unigram probability should not be high as
this would result in an inflated probability estimate for
‘Francisco’.

We use a version of Kneser–Ney smoothing, interpo-
lated Fixed Modified Kneser–Ney (iFix-MKN), to estimate
conditional trigram and bigram probabilities (Maximum
Likelihood Estimation). Our model is a direct implementa-
tion of that found in Chen and Goodman (1999, section 3).
Kneser–Ney smoothing uses both a discounting parameter
which subtracts some value from non-zero count n-grams,
and a smoothing parameter that maximizes the probability
of obtaining an accurate estimate from lower-order n-grams.
Crucially, our implementation is fixed in that both the dis-
counting parameter and smoothing parameters are defined
prior to applying the model to test data. Both parameters
can be more accurately defined when estimated using held
out data prior to analysis. While models that estimate their
parameters outperform their fixed counterparts, iFix-MKN
outperforms all other smoothing techniques (including those
that use held out data to estimate parameters), with the
exception of the version of MKN that uses estimated param-
eters. As a result, iFix-MKN has the benefit of being both
simpler and more domain-general. In what follows we lever-
age an implementation of iFix-MKN using our cmscu
package to explore and quantify language use in a large nat-
ural dataset. The implementation is freely available on the
cmscu website.

Current study

Our analyses are motivated by recent studies that show a
message’s Information-Theoretic structure is influenced at a
variety of linguistic levels including syntactic variation and
phonetic reduction (Aylett, 1999; Genzel & Charniak, 2002;

Aylett & Turk, 2006; 2004; Levy & Jaeger, 2006; Jaeger,
2010; Mahowald et al., 2013). Specifically, the amount of
information present across a message is shown to increase
over time, abiding by the entropy rate constancy principle—
a message’s information density increases at a stable rate
(Genzel & Charniak, 2002)—perhaps in an effort to provide
relevant content against channel noise. That is, the cogni-
tive agent works to structure their utterance in a way that
maintains the highest rate of information without breaking
channel capacity (determined by the amount of noise in the
system). When at risk of breaking channel capacity, lan-
guage users might add optional low-information words to
high information-dense messages (Jaeger, 2010), or sim-
ply slow down their utterance (Aylett & Turk, 2006; 2004)
effectively spreading an otherwise information-dense mes-
sage over a longer utterance. These findings suggest that
language users are sensitive to channel noise and adjust their
utterances to match the channel’s capacity in an effort to bal-
ance redundancy with confidence in signal transmission. To
do this the theory of Uniform Information Density (UID),
building off previous work (e.g., the smooth signal redun-
dancy hypothesis: Aylett and Turk (2004)), suggests lan-
guage users try to avoid “peaks and troughs” in information
density. As a result, language users exhibit an inverse rela-
tionship between language redundancy and predictability in
an effort to communicate efficiently.

Theories such as UID posit that the information den-
sity of one’s message may be attuned to the expectations
the producer holds about their intended audience. One pos-
sibility is that a more established common ground due
to a larger number of shared experiences may result in
a decrease in channel noise which affords more complex
information-dense language use Clark and Brennan (1991).
Indeed, many studies have shown that language users make
assumptions about their audience and structure their own
utterances with these assumptions in mind (Brennan &
Williams, 1995, e.g., among many: Jaeger, 2013; Krauss
& Fussell, 1990; Pate & Goldwater, 2015). For example,
the information density of a language user’s Yelp reviews
is higher when their network of friends is more densely
interconnected (Vinson & Dale, 2016). Similarly, microblog
posts on Twitter about specific events, such as a baseball
game series, are more information-dense toward the end
of a sporting event than during (Doyle & Frank, 2015).
Such findings add to growing evidence that language users
are sensitive to the knowledge they share with their audi-
ence. This sensitivity is reflected in how they structure their
utterances.

Method Few studies show directly how one’s audience per-
ceives the helpfulness of a producer’s language use. In this
example application of cmscu, we explore in what ways
the information density of a Yelp user’s review, estimated
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via iFix-MKN, can predict how useful, funny and/or cool
(U/F/C) it is to its reader. The cmscu package greatly facil-
itates these exploratory analyses of natural data sets. With it
we are able to efficiently process massive amounts of text
from the Yelp, Inc. Dataset Challenge corpus using one of
the most sophisticated algorithms to date.

We estimated a total of five measures from Yelp review
text: two information density measures and two unifor-
mity measures as well as review length. We even estimate
information measures over trigrams for this analysis, which
cmscu permits with great flexibility. As this section serves
only as an example analysis, we detail these measures in
the Appendix below. The measures are based on analysis
of bigrams, and trigrams using the iFix-MKN algorithm
requiring estimation of conditional probabilities in Yelp
text to the second order (trigrams). These measures are
summarized briefly in Table 3.

The standard deviation of each information density mea-
sure was taken as the measure of variance (inverse uni-
formity). In addition to the four measures in Table 3, we
included review length, giving us five variables used to
predict U/F/C. Increasing n quantifies a successively more
multiword estimation of information density and uniformity
in language use. Given the nature of iFix-MKN, such that
in the event of missing n-grams the model backs off to a
lower-order n-gram, in our analysis of the Yelp dataset the
correlation between trigram information and bigram infor-
mation is high, r = .93, t(1.03 mil) = 2527, p < 2.2e-16.
For this reason, we predict U/F/C using two separate mod-
els, one including bigram information/variance and length
and the other including trigram information/variance and
length. Information measures become more and more sparse
as we increase model complexity and so there is a trade-off
in using different models. Estimating higher-order n-grams
gives a better measure of the actual structure of the lan-
guage, while estimating lower n-grams provides a better
model fit. Moreover, when modeling real language use, such
as that from the Yelp community, it can vary widely from
one review to the next leaving even very well trained mod-
els weak predictors. In such cases, estimating lower-order
n-grams may prove to be a stronger predictor of behavioral
phenomena. Finally, our variance measures will correlate
with information density measures due to the presence of a
true zero in information density. This will inflate the vari-
ance accounted for within our regression models. We adjust
for both issues by first predicting each uniformity measure

by its information density measure using linear regression
(lm) in R, and then taking the residual of that model as our
true estimate of information uniformity; rσ (BI), rσ (T I).

Higher-order n-gram models are more computation-
ally expensive to estimate using iFix-MKN. However with
cmscu it is relatively straightforward and easy to deploy in
R. Though the precise n-gram model details are outside the
scope of this example application of cmscu, we offer the
reader a breakdown of our variables and modeling approach
in the Appendix. This will also serve as an example strategy
for deploying cmscu in more detail.

Though simply an example application, prior research
motivates some predictions: (1) Information density will be
positively related to U/F/C ratings. The language use within
reviews is most likely already abiding by the constraints of
its community. For this reason, information-dense messages
should hover closer to the channel’s capacity, thus providing
more helpful content without too much risk of being misun-
derstood. (2) Information variance will be positively related
to U/F/C. Increased variance may be associated with higher
reader ratings. Specifically, more variance in information
across a message may be related to higher reader ratings as it
may suggest reviewer’s are inserting low information-dense
words to lower the risk of presenting information that may
be misunderstood.

Results In all cases, a negative binomial model predicted,
perhaps surprisingly, a large portion of variance. Tables 4
and 5 report the 95 % Confidence Intervals (CIβ ) and asso-
ciated Z-scores for each predictor variable as well as the
overall R2

adj for each model containing bigram and trigram
measures respectively. There were no differences between
the trends in either bigram or trigram model predictors. That
is, all measures were highly significant positive predictors
of U/F/C ratings, such that an increase in review length,
information density and variance increased the probability
of a review receiving more U/F/C ratings. In order, review
length (Log-Length) was the strongest predictor followed by
information density measures (ABI and ATI) and last the
variance of information density, rσ (BI) and rσ (TI). Because
there was little difference between trigram and bigram
models and because trigrams are considered a stronger esti-
mate of the structure of the language itself, Figs. 2, 3, 4
present only the trigram model’s predicted U/F/C ratings by
(A) Log-Length, (B) Average Trigram Information and (C)
Variance of Trigram Information respectively.

Table 3 Summary of measures from information theory

n Density measure Uniformity measure

2 Average (iFix-MKN) Bigram Information: ABI , Variance of Bigram Information: σ(BI)

3 Average (iFix-MKN) Trigram Information: AT I , Variance of Trigram Information: σ(T I)
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Table 4 Bigram by reader rating negative binomial model

Rating type Predictor 95 %(CIβ ) Z-value Effect size

Useful Intercept (−.169, −.163) −104.4* R2
adj = .15

Log-Length (.585, .591) 367.0*

ABI (.175, .182) 113.3*

rσ (BI) (.040, .043) 24.5*

Funny Intercept (−1.121, −1.111) −425.6* R2
adj = .09

Log-Length (.647, .657) 254.1*

ABI (.355, .365) 143.6*

rσ (BI) (.075, .086) 30.8*

Cool Intercept (−.828, −.819) −365.8* R2
adj = .09

Log-Length (.616, .625) 275.5*

ABI (.197, .206) 90.3*

rσ (BI) (.102, .113) 46.7*

*p < 2e-16, r is the residual from lm models described in text

Overall this exploratory analysis suggests that the com-
position of language use, in terms of Information-Theoretic
structure, significantly predicts the impression of a review
from its readers. These exploratory analyses open up inter-
esting avenues for future research on language use. For
example, showing that the variance of information is related
to reader ratings as well as information density measures
may suggest readers are more likely to find both high
information and decreased channel noise useful for compre-
hension. Future research interested in understanding what
aspects of online reviews readers find useful, funny or cool
should be sure to investigate various other linguistic fea-
tures, such as simpler lexical-level variables (e.g., curse
words), which might be highly correlated with more sophis-
ticated information measures presented here. This is outside

of the scope of the current demonstration, but the tool we
introduce here may permit such analyses efficiently.

General discussion

Efficiently processing large amounts of textual data is a
problem at the forefront of behavioral science. One way to
advance this process, as we demonstrate here, is by adapt-
ing well-known tools from computer science by developing
statistical packages in programs used by behavioral scien-
tists. This effectively broadens the number of tools that
can be used by behavioral scientists while redefining the
problem space wherein that tool is applicable. Here we use
a sketch algorithm known for its efficiency in processing

Table 5 Trigram by reader rating negative binomial model

Rating type Predictor 95 %(CIβ ) Z-value Effect size

Useful Intercept (−.167, −.161) −102.9* R2
adj = .15

Log-Length (.590, .597) 371.7*

AT I (.161, .167) 102.4*

rσ (T I) (.043, .050) 28.5*

Funny Intercept (−1.118, −1.108) −424.4* R2
adj = .09

Log-Length (.653, .663) 256.2*

AT I (.352, .362) 140.8*

rσ (T I) (.062, .073) 25.8*

Cool Intercept (−.825, -.816) −364.4* R2
adj = .09

Log-Length (.625, .634) 278.8*

AT I (.175, .183) 79.3*

rσ (T I) (.114, .123) 51.4*

*p < 2e-16, r is the residual from lm models described in text
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Fig. 2 Predicted Usefulness ratings by a Log-Length, b Average Trigram Information (ATI) and c Variance of Trigram Information σ(T I).
Predictions are provided by the full negative binomial model controlling for other variables

massive real-time data (Cormode & Muthukrishnan, 2011)
to approximate the information density of words, using a
sophisticated smoothing algorithm (iFix-MKN), across mil-
lions of online reviews. We show it to be a successful tool
toward discovering interesting behavioral phenomena.

Our analysis shows the cmscu package can be used
to process n-gram data at speeds and scales beyond the
reach of commonly available R packages. In real-world
applications, such as our Yelp data analysis, which used
a modified Kneser–Ney implementation powered by the
cmscu library, was able to process 5 % of the 2.2 mil-
lion reviews we evaluate in under a hour, on a single core,
on commodity hardware. Our analysis was configured to
evaluate up to quadgrams, requiring 8 separate cmscu
instances each configured to occupy 1gb of RAM. A much
earlier (attempted) analysis on the dataset, built upon tm
using its DocumentTermMatrix object, had run for over
2 months without finishing—the algorithmic and memory
scaling requirements resulted in constant swapping of hard
drive space, which effectively brought the computations to

a standstill. Though limited in features compared to tm,
cmscu is simple to use, requires few lines of code, and
scales with the processing power of one’s computer and
size of one’s dataset. That is, users may specify memory
usage a priori, in line with their hardware’s capabilities, and
nonetheless obtain a useful analyses, independent of the size
of the dataset under study.

Using cmscu we explore possible relationships among
reader ratings and sophisticated estimations of Information-
Theoretic structures of review text in a large Yelp, Inc.
dataset, a process difficult for common scripting packages.
Indeed, the sheer size of our dataset affords the possible
discovery of subtle, but interesting relationships such as
those between the linguistic choices of language users and
their audience. For this reason our predictions are inher-
ently exploratory. Though our predictions are broad, and
somewhat intuitive perhaps, our findings build on previous
work that shows language users structure their utterances
with their intended audience in mind (Jaeger, 2013; Clark &
Brennan, 1991; Brennan & Williams, 1995).

Fig. 3 Predicted Funniness ratings by a Log-Length, b Average Trigram Information (ATI) and c Variance of Trigram Information σ(T I).
Predictions are provided by the full negative binomial model controlling for other variables
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Fig. 4 Predicted Coolness ratings by a Log-Length, b Average Trigram Information (ATI) and c Variance of Trigram Information σ(T I).
Predictions are provided by the full negative binomial model controlling for other variables

We speculate that reader ratings mark the successful
transmission of some useful information by its producer. If
so, longer reviews, those with more information density and
those with greater variance in information are more likely
to be successfully transmitted. Interestingly, one possibility
is that higher reader ratings are more probable for reviews
that are more information-dense and more variable because
reviewers insert low information-dense words in higher
information-dense messages which may help to facilitate
comprehension (Jaeger, 2010).

Another possibility worth further exploration is whether
simpler linguistic factors might account for reviewer ratings
more so than relatively sophisticated information measures.
Specific lexical words provide a window into the seman-
tic content that might be influencing reader ratings. This
is inherently different than Information-Theoretic measures
which target how likely those same words are to occur given
the frequency of its context. Future studies might include
both semantic and Information-Theoretic factors to deter-
mine what aspects of one’s language use are considered
more helpful to its audience.

These exploratory findings add to ongoing research
throughout the behavioral sciences. However, further inves-
tigation is needed in order to assess the generality and accuracy
of our findings. Our analysis explores new avenues for fruit-
ful scientific data exploration. Such is the case with many
exploratory studies. Yet, the exploration of interesting behav-
ioral relationships is often inaccessible to classically trained
behavioral scientists whose collection methods are often
guided, justifiably, by detailed specific theoretical concerns.

Conclusions

Current problems in science and industry involve processing
increasingly large and complex data sets which necessitates

the development of novel scalable computational tools.
Mathematical and computational scientists are naturally a
good fit to discover such solutions as their training is often
geared toward finding solutions to engineering problems,
paying little mind to interesting behavioral phenomena dis-
coverable at their fingertips. Yet, more and more freely
available data sets such as those from the Netflix chal-
lenge, Yelp Dataset Challenge as well as Twitter’s API and
Yahoo!’s release of 100 million images, are overwhelmingly
loaded with interesting behavioral nuances that can be har-
nessed to answer longstanding questions in the behavioral
sciences and also increase the success of newly develop-
ing machine learning algorithms that aim to predict future
behavior. Indeed, some cognitive scientists argue we are cur-
rently in the midst of a revolution: “to take back behavioral
data, and - just as in the last cognitive revolution - to demon-
strate the value of postulating a mind between browsing
history and mouse movements” (Griffiths, 2015).

Unfortunately, taking back behaviorally relevant data is
not always so straightforward. Even after obtaining the
data many behavioral scientists do not know what tools are
necessary to address their questions. Even when the most
cutting-edge tools are freely available, few behavioral scien-
tists are trained in methods that could enable them to harness
these powerful tools. To conclude, we return to our three key
methodological observations summarizing how they were
successfully used to facilitate this process.

First, We described how “sketch” techniques help pro-
cess large amounts of data efficiently and argue these
are critical for the coming ‘big data’ age in cogni-
tive science (Griffiths, 2015). This provides one instance
that shows it is possible that behavioral scientists can
often find more efficient data techniques for their prob-
lems (Section “R-package cmscu”). Second, corpus or
other data analysis can make ready use of these spe-
cialized solutions (Section “Information-theoretic structure
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of yelp reviews”). We demonstrate a fruitful domain in
which such a strategy can apply—the Information-Theoretic
analysis of language structure in corpora. We then used
our library to implement a sophisticated n-gram analysis
(iFix-MKN) to explore the statistical properties of language
that predict successful communication. Finally, multidisci-
plinary cross-fertilization is crucial (General Discussion).
We revisited important messages about cross-disciplinary
interactions and suggest that adopting a wide range of
tools for various disciplines can help to ensure that behav-
ioral scientists find efficient solutions for their problems,
while giving computational scientists and engineers exciting
behavioral problems to apply their research to.

Now, more than ever, interdisciplinary collaborations
among behavioral and computational scientists are required
in order to successfully accomplish our goals. To this end,
some argue we are in the midst of a new era of sci-
entist - the computational social scientist - who’s focus
lies at the intersection of cognitive and computer science
(Lazer et al. 2009). This manuscript belays the success of
one such method, interdisciplinary collaboration, which can
help maintain the pace of scientific discovery within the
behavioral sciences. Our work fits within the broader theme
of advancing discovery across the sciences illustrating that
interdisciplinary collaboration—which can connect previ-
ously intractable problems with new tools and methods—is
a successful approach toward accomplishing this goal.
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Appendix

The two information density measures are the Average
Bigram Information (ABI ) and the Average Trigram Infor-
mation (AT I ):

ABIj = 1

N − 1

N
∑

i=2

− log2 PiF ix−MKN(wi |wi−1), (5)

ATIj = 1

N − 2

N
∑

i=3

− log2 PiF ix−MKN(wi |wi−1, wi−2) (6)

where N is the number of words in the jth review,
PiF ix−MKN(w) is the iFix-MKN probability of word w,
andwi is the ith word. Bigram Information is the probability
of wi given wi−1 and Trigram Information is the probabil-
ity of wi given the joint probability of wi−1 and wi−2. We
then obtain the information density of a review by taking
the average amount of information across the review. We
calculate the standard deviation, σ , of each review’s aver-
age information by each n-gram and take this as an inverse
measure of a message’s uniformity: σ(BI), and σ(T I).

An example implementation of iFix-MKN can be found on
the website and specific details about the algorithm can be
found in Chen and Goodman (1999, section 3).

We estimate both bigram and trigram information, even
though estimates within the trigram model rely, in part,
on bigram model estimates. We do this because maximum
likelihood bigram models will typically account for more
unseen data, while trigram models are a better measure
of the language’s actual structure (e.g., afford better word
predictability when the data exists). We avoid making the
decision to balance this trade off by modeling both explic-
itly in two distinct models and comparing those models to
one another.

Independent variables We trained the information models
on Yelp reviews from the United States only to avoid train-
ing on non-English reviews (though future research might
look to see if different languages show similar results to
those found here). Half of the Yelp, Inc. dataset was used
to train each model which was tested on the remaining
half. After obtaining information density and uniformity
measures for each review within the test set we removed
reviews shorter than 15 words in length (see Frank & Jaeger,
2008; Martin & Jurafsky, 2000; Vinson & Dale, 2014, for
other possible ways to control for n-gram reliability). This
reduced the total number of reviews from 1.1 million to 1.03
million (< 5 % reduction).

We anticipated the possibly of an inflated variance due
to multicollinearity when including both information den-
sity and uniformity measures within the same model. The
variance (inverse uniformity) naturally increases as infor-
mation density increases, due to the presence of a true zero.
For this reason, we took the residual of each uniformity
measure, first predicted by its respective information den-
sity measure as the true measure of uniformity (rσ (BI) and
rσ (T I)). After, a variance inflation factor (VIF) analysis
(Craney & Surles, 2002; Stine, 1995) in R (Library CAR)
was used to determine whether the new predictor variables
exhibit collinearity with any other predictor variable. None
of our predictor variables showed signs of strong collinear-
ity (VIF < 2). All variables were centered and standardized
for the purpose of interpretation.

Assessing model fit U/F/C ratings are count variables asso-
ciated with each distinct review. Because of this we initially
use a Poisson regression model in R to predict each rat-
ing. We compare this model against a null intercept model
using a chi-squared test of difference of log-likelihoods. We
found the full Poisson model was an improvement over the
null model; however, the variance of each reader rating was
greater than the mean (Useful: M = 1.05, SD = 2.17,
Funny: M = .46, SD = 1.60, Cool: M = .56, SD = 1.72)
indicating possible overdispersion (larger number of zeros).
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One assumption within Poisson models is that the variance
equals the mean. Violating this assumption may result in
underestimated standard errors or inflation in model sig-
nificance. Because of this, the distribution might be better
fit by another model that does not make this assumption
(Scott Long, 1997). Specifically, we compare the Pois-
son regression against a negative binomial regression that
does not require the variance equal the mean (thus adjust-
ing for overdispersion).3 Again using a chi-squared test on
the difference between log-likelihoods, we found the nega-
tive binomial model was an improvement over the Poisson
model for all (U/F/C) ratings. Crucially, the Poisson model
results revealed the same exact trend (similar significant
predictors) as the results from the negative binomial model,
but with higher coefficient estimates. This suggests the neg-
ative binomial model is in fact adjusting for inflation of
variance present in the Poisson models. Thus, we report the
results from the negative binomial models.

To assess the significance of the negative binomial
model, we use a likelihood ratio test comparing the deviance
of a null model—predicting U/F/C using the intercept
only—and the full model. We found the negative binomial
model is significantly better at predicting U/F/C than the
null model. Importantly, the negative binomial regression
model does not allow for a straight forward interpretation
of effect size. Taking after previous research, we use an
adjusted likelihood-ratio-index (Abney et al., Submitted;
Long & Freese, 2006) a type of pseudo R2

adj (Mittlböck
et al. 1996) as our measure of effect size:

R2 = 1 − (Lfitted/Lintercept)
2/n (7)

Where L is the data likelihood.
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