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Abstract: The main question F&S pose is whether “what and how we see is functionally 
independent from what and how we think, know, desire, act, etc.” We synthesize a collection of 
concerns from an interdisciplinary set of co-authors regarding F&S’s assumptions and appeals to 
intuition, resulting in their treatment of visual perception as context-free. 
 
 
 
 
No perceptual task takes place in a contextual vacuum. How do we know that an effect is one of 
perception qua perception that does not involve other cognitive contributions? Experimental 
instructions alone involve various cognitive factors that guide task performance (Roepstorff & 
Frith, 2004). Even a request to detect simple stimulus features requires participants to understand 
the instructions (“language, memory”), keep track of them (“working memory”), become sensitive 
to them (“attention”), and pick up the necessary information to become appropriately sensitive 
(“perception”). These processes work in a dynamic parallelism that is required when one 
participates in any experiment. Any experiment with enough cognitive content to test top-down 
effects would seem to invoke all of these processes. From this task-level vantage point, the precise 
role of visual perception under strict modular assumptions seems, to us, difficult to intuit. We are, 
presumably, seeking theories that can also account for complex natural perceptual acts. Perception 
must somehow participate with cognition to help guide action in a labile world. Perception 
operating entirely independently, without any task-based constraints, flirts with hallucination. 
Additional theoretical and empirical matters elucidate even more difficulties with their thesis. 
 
 



First, like F&S, Fodor (1983) famously used visual illusions to argue for the modularity of 
perceptual input systems. Cognition itself, Fodor suggested, was likely too complex to be modular. 
Ironically, F&S have turned Fodor’s thesis on its head, and argue that perceptual input systems 
may interact as much as they like without violating modularity. 
 
But there are some counterexamples. In Jastrow’s (1899) and Hill’s (1915) ambiguous figures, 
one sees either a duck or rabbit on the one hand, and either a young woman or old woman on 
the other. Yet, one can cognitively control which of these you see. Admittedly, cognition cannot 
“penetrate” our perception to turn straight lines into curved ones; and clearly we cannot see a 
young woman in the Jastrow figure. Nonetheless, cognition can change our interpretation of 
either figure. 
 
Perhaps more compelling are auditory demonstrations of certain impoverished speech signals 
called sine-wave speech (e.g., Darwin, 1997; Remez, Pardo, Piorkowski & Rubin, 2001). Most of 
these stimuli sound like strangely squeaking wheels until one is told that they are speech. But 
sometimes the listener must be told what the utterances are. Then, quite spectacularly, the 
phenomenology is one of listening to a particular utterance of speech. Unlike the visual figures 
above, this is not a bistable phenomenon; once heard as speech one cannot fully go back and hear 
these signals as the squeaks one heard before. Is this not top-down? 
 
Such phenomena – the bistability of certain visual figures and the asymmetric stability of these 
speech-like sounds, among many others – are not the results of confirmatory research. They are 
indeed the “amazing demonstrations” that F&S cry out for. 
 
Secondly, visual neuroscience shows numerous examples of feedback projections to visual cortex, 
and feedback influences on visual neural processing ignored by F&S. The primary visual cortex 
(V1) receives descending projections from a wide range of cortical areas. Although the strongest 
feedback signals come from nearby visual areas, V3 and V4, V1 also receives feedback signals 
from V5/MT, parahippocampal regions, superior temporal parietal regions, auditory cortex 
(Clavignier, Falchier, & Kennedy, 2004) and the amygdala (Amaral, Behniea, & Kelly, 2003), 
establishing that the brain shows pervasive top-down connectivity. The next step is to determine 
what perceptual function descending projections serve. F&S cite a single paper to justify ignoring 
a massive literature accomplishing this (p. 9). 
 
Neurons in V1 exhibit differential responses to the same visual input under a variety of contextual 
modulations (e.g., David, Vinje, & Gallant, 2004; Hupé et al. 1998; Kapadia, Ito, Gilbert, & 
Westheimer, 1995; Motter, 1993). Numerous studies with adults have established that selective 
attention enhances processing of information at the attended location, and suppresses distraction 
(Gandhi, Heeger, & Boynton, 1999; Kastner, Pinsk, De Weerd, Desimone, & Ungerleider, 1999; 
Markant, Worden, & Amso, 2015; Slotnick, Schwarzbach, & Yantis, 2003). This 
excitation/suppression mechanism improves the quality of early vision, enhancing contrast 
sensitivity, acuity, d-prime, and visual processing of attended information (Anton-Erxleben & 
Carrasco, 2013; Carrasco, 2011; Lupyan & Spivey, 2010; Zhang et al., 2011). This modulation of 
visual processing in turn supports improved encoding and recognition for attended information 
among adults (Rutman, Clapp, Chadick, & Gazzaley, 2010; Uncapher & Rugg, 2009; Zanto & 
Gazzaley, 2009) and infants (Markant & Amso, 2013, 2015; Markant, Oakes & Amso, 2015). 
Recent data indicate that attentional biases can function at higher levels in the cognitive hierarchy 
(Chua & Gautier, 2015), indicating that attention can serve as a mechanism guiding vision based 
on category-level biases. 
 
 



Results like these have spurred the visual neuroscience community to develop new theories to 
account for how feedback projections change the receptive field properties of neurons throughout 
visual cortex (Dayan, Hinton, Neal & Zemel, 1995; Friston, 2010; Gregory, 1980; Jordan, 2013; 
Kastner & Ungerleider, 2001; Kveraga, Ghuman, & Bar, 2007; Rao & Ballard, 1999; Spratling, 
2010). It is not clear how F&S’s theory of visual perception can claim that recognition of visual 
input takes place without top-down influences, when the activity of neurons in the primary visual 
cortex is routinely modulated by contextual feedback signals from downstream cortical 
subsystems. The role of downstream projections is still under investigation, but theories of visual 
perception and experience ought to participate in understanding them, rather than ignoring them. 
 
F&S are incorrect when they conclude that it is “eminently plausible that there are no top-down 
effects of cognition on perception.” Indeed, F&S’s argument is heavily recycled from a previous 
BBS contribution (Pylyshyn, 1999). Despite their attempt to distinguish their contribution from 
this one, it suffers from very similar weaknesses identified by past commentary (e.g., Bruce, 
Langton, & Hill, 1999; Bullier, 1999; Cavanagh, 1999; among others). F&S are correct when 
they state early on that, “discovery of substantive top-down effects of cognition on perception 
would revolutionize our understanding of how the mind is organized.” Especially in the case of 
visual perception, that is exactly what has been happening in the field for these past few decades. 
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