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Abstract The study of interpersonal synchrony examines
how interacting individuals grow to have similar behavior,
cognition, and emotion in time. Many of the established meth-
ods of analyzing interpersonal synchrony are costly and time-
consuming; the study of bodily synchrony has been especially
laborious, traditionally requiring researchers to hand-code
movement frame by frame. Because of this, researchers have
been searching for more efficient alternatives for decades.
Recently, some researchers (e.g., Nagaoka & Komori (IEICE
Transactions on Information and Systems, 91(6), 1634–1640,
2008); Ramseyer & Tschacher, 2008) have applied computer
science and computer vision techniques to create frame-
differencing methods (FDMs) to simplify analyses. In this
article, we provide a detailed presentation of one such FDM,
created by modifying and adding to existing FDMs. The FDM
that we present requires little programming experience or
specialized equipment: Only a few lines of MATLAB code
are required to execute an automated analysis of interpersonal
synchrony. We provide sample code and demonstrate its use
with an analysis of brief, friendly conversations; using linear
mixed-effects models, the measure of interpersonal synchrony
was found to be significantly predicted by time lag (p < .001)
and by the interaction between time lag and measures of
interpersonal liking (p < .001). This pattern of results fits with
existing literature on synchrony. We discuss the current limi-
tations and future directions for FDMs, including their use as
part of a larger methodology for capturing and analyzing
multimodal interaction.
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Conversation is arguably one of the most common—and
important—modes of social interaction. Combining a va-
riety of intrapersonal and interpersonal mechanisms, con-
versation presents a rich source of data for researchers in
numerous areas, from linguistics and affect to posture and
gesture. Interpersonal synchrony research lies at the inter-
section of many of these areas, seeking to characterize
the way that interlocutors (individuals involved in con-
versation) grow to have similar behavior, cognition, and
emotion over time. Many areas of research in the be-
havioral sciences have approached the issue of synchro-
ny, resulting in a scattered terminology: accommodation
(Giles & Smith, 1979), alignment (Pickering & Garrod,
2004), coordination (Richardson & Dale, 2005), cou-
pling (Shockley, Santana, & Fowler, 2003), entrainment
(Brennan & Clark, 1996), mimicry (Chartrand & Bargh,
1999), and social tuning (Valdesolo, & DeSteno, 2011),
among others.1

The overwhelming growth of this research in recent
years, including the diverse range of terms and concepts
different researchers invoke, only adds to the importance
of precise measurements and analytical methods. Research
in this area has seen a recent push toward computer vision
and computer-aided analysis techniques that can streamline
objective measurement while significantly improving

1 For the purpose of this article, we simply refer to these processes as
synchrony, although additional research may help to determine relevant
differences among these terms.
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efficiency and cost effectiveness. Attempts to standardize
methodology for this area of research may even lead to
stricter definitions of terms, enriching the field while help-
ing researchers communicate the precise nature of their
work.

Issues with synchrony data collection and analysis

Interpersonal synchrony research faces problems not
found in traditional research areas within experimental
psychology. For example, synchrony research often cen-
ters on the dyad rather than the individual. This can
lead to smaller sample sizes, since dyads are more
costly and difficult to recruit. Conversations unfold over
minutes, not milliseconds, and a single data collection
session from one dyad may last several hours (e.g.,
Skuban, Shaw, Gardner, Supplee, & Nichols, 2006).
Data collection for these studies, therefore, involves a
significant investment of time by a researcher interested
in interpersonal processes.

After collecting potentially dozens of hours of inter-
action for an experiment, researchers must spend even
more time analyzing the data. Conversations must be
transcribed for analyses of linguistic synchrony, but a
single hour of dialogue may require over 10 h to
transcribe (Kreuz & Riordan, 2011). Analysis of bodily
synchrony, the primary focus of this article, has histor-
ically required researchers to meticulously hand-code
limb movement in videotaped interactions frame by
frame (e.g., Condon & Sander, 1974). Some postcoding
automated techniques have been developed to detect
repeated patterns of movement synchrony (e.g.,
THEME; Grammer, Kruck, & Magnusson, 1998); while
inarguably helpful in identifying meaningful patterns of
movement, these techniques do not mitigate the labor-
intensive hand-coding process. Some believe that these
issues have likely discouraged some researchers from
studying interpersonal synchrony due to lack of funding
or insufficient staffing (Bernieri, Davis, Rosenthal, &
Knee, 1994).

Although significant, the challenges presented by data
collection and analysis are not insurmountable.
Researchers have been refining cost-effective and effi-
cient methods of studying synchrony for decades, and
research on interpersonal synchrony has unveiled new
ways of exploring conversation through facilitated anal-
ysis (e.g., Bernieri et al., 1994). Improved research
methods may minimize the restrictions imposed by min-
imal funding and can be combined with other methods
to explore questions of cross-channel synchrony and
interaction (e.g., affect and body movement; see the
General Discussion section).

Existing alternatives to hand-coding for bodily
synchrony

Holistic ratings

One of the most established alternatives to hand-coding
involves holistic ratings by judges. The specific methods
employed by each researcher vary, but all have a relatively
similar general procedure. Judges may be completely naïve
(e.g., Bernieri, Reznick, & Rosenthal, 1988) or strictly
trained (e.g., Criss, Shaw, & Ingoldsby, 2003; Grammer,
Honda, Jüette, & Schmitt, 1999), depending on the goals
of the study. Judges are commonly instructed to watch
videotaped interactions and provide a rating of the interac-
tion, typically based on Likert scales of general interaction
qualities (e.g., Bernieri et al., 1988; Criss et al., 2003). The
interlocutors’ dialogue may be muted (e.g., Bernieri et al.,
1988) or included in the raters’ materials (e.g., Criss et al.,
2003); both have been established as equally effective as
measures of bodily synchrony (Bernieri et al., 1994). Each
interaction may be rated only once (e.g., Bernieri et al.,
1988) or, to ensure high interrater reliability, by multiple
raters (e.g., Criss et al., 2003).

Holistic ratings often require significantly less time than
frame-by-frame analyses, but they are not without their own
methodological problems. With the exception of event-
based counting methods (e.g., Skuban et al., 2006), holistic
ratings are almost entirely subjective. Intensive judge train-
ing and employing multiple raters may decrease subjectivi-
ty, but they increase the amount of time required for analysis
(e.g., the 6-week training course used by Criss et al., 2003).
Because synchrony is often based on measures with fewer
than a dozen items, these methods often provide less within-
subjects power for statistical tests.

Researchers have improved holistic ratings, but these
methods remain unable to objectively quantify bodily syn-
chrony. Ratings may be effective for studying how individ-
uals perceive synchrony, but their inherent subjectivity
limits the degree to which researchers can parse apart the
mechanisms behind synchrony. While these methods are
significantly more efficient, judges’ holistic ratings lose
the precision of Condon and Sander’s (1974) hand-coding
methods.

Automated video analysis

Other researchers have begun attempts at automating anal-
yses of bodily synchrony. Although these new methods are
accompanied by new difficulties, they provide significant
advantages over other methods proposed to date. Many of
the methods blend computer vision techniques with psycho-
logical research to create rater-free, coding-free analytical
techniques. Computer-driven techniques minimize researcher
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interaction with raw data, thereby removing the subjectivity of
holistic ratings and the labor of hand-coding. These analyses
are intended to be efficient, content-free methods for assessing
bodily synchrony during interaction.

Motion-tracking systems appear to be an ideal candidate
for tracking interlocutors’ body movement over time. Other
areas of research have already begun utilizing these sys-
tems’ automated collection of data and computation of
movement-related variables for the whole body and individ-
ual body parts (e.g., Battersby, Lavelle, Healey, & McCabe,
2008; Lu & Huenerfauth, 2010). However, existing motion-
tracking systems are almost as restrictive in their own right
as hand-coding methods. Current systems are expensive and
can present methodological concerns (Welch & Foxlin,
2002). For example, specialized motion-tracking suits are
often tight-fitting; participants may feel discomfort, impact-
ing naturalistic movement. Once these systems become
cheaper and less restrictive, motion tracking may become a
standard tool for bodily synchrony research. Nevertheless,
for researchers facing limitations in funding and for those
whose questions are not compatible with the high-tech mo-
tion capture requirements, body-suit motion capture still
poses significant challenges.

Meservy et al. (2005) have pioneered another appealing
method. Their methodology—similar to attempts at auto-
mated blob analysis (e.g., Lu, Tsechpenakis, Metaxas,
Jensen, & Kruse, 2005)—is intended to automatically track
patterns of head and hand movement in videos captured in
moderately high quality. However, as presented in their
article, the program is only partially automated; it currently
requires a significant investment of time at the beginning of
analysis and almost constant guidance throughout the pro-
cess. It also poses restrictions for interaction researchers:
Videos must be shot head-on with a single participant in the
image, creating problems for applications in naturalistic
conversation between two interlocutors. While interesting,
Meservy et al.’s paradigm is not yet feasible for interaction
research.

We believe that the most promising and effective inter-
personal bodily synchrony techniques to date are what we
will call frame-differencing methods (FDMs). Rather than
tracking specific body parts, FDMs are grounded in research
showing that interlocutors synchronize in overall body
movement in addition to posture and gesture (e.g.,
Shockley et al., 2003). Encompassing several existing
named (e.g., motion energy analysis [MEA]; Grammer et
al., 1999; Ramseyer & Tschacher, 2008, 2011) and unnamed
(e.g., Nagaoka & Komori, 2008) methods, FDMs track the
changes in pixels from one frame to the next. These methods
require the background of an image to remain static, so the
only pixel changes from frame to frame will likely be caused
by interlocutors’movement. FDMs generally analyze move-
ment quantitatively by strictly measuring pixel changes

between frames (e.g., Nagaoka & Komori, 2008), but some
FDMs utilize qualitative analyses of movement (e.g., judg-
es’ ratings of movement FDM-derived visualizations;
Grammer et al., 1999).

FDM data collection setups (e.g., Nagaoka & Komori,
2008; Ramseyer & Tschacher, 2008, 2011) generally have
similar requirements. They often require only one or two
unmoving video cameras and stable ambient lighting, mak-
ing FDMs highly cost effective. Prior to analysis, the video
data are often transformed—manually or automatically—
into grayscale images and normalized for brightness.
Existing FDMs are indifferent to many movement character-
istics (e.g., direction), and they have been used successfully
in several studies to date, primarily in clinical (e.g., Kupper,
Ramseyer, Hoffmann, Kalbermatten, & Tschacher, 2010;
Nagaoka & Komori, 2008; Ramseyer & Tschacher, 2008,
2011) and ethological (e.g., Grammer et al., 1999) domains.
Our goal in this article is to present FDM to those interested
in basic experimental research on conversation and to de-
velop a simple version of an FDM that can be run with
minimal programming experience in MATLAB code, which
we supply in Appendix 2.

By presenting a template for a very basic but nevertheless
powerful FDM, we hope to provide experimental research-
ers with a tool that can be easily modified according to their
research needs. We also point researchers to existing meth-
ods in nonexperimental fields to explore additional ways of
implementing similar analyses (e.g., Grammer et al., 1999;
Ramseyer & Tschacher, 2011).

A simple frame-differencing method

In this article, we showcase a highly simplified, MATLAB-
based method of extracting overall body movement between
two people engaged in conversation. Interpersonal synchro-
ny is a highly diverse research topic, comprising researchers
from various fields and technical backgrounds. The FDM
presented here is based on modifications to existing meth-
ods and may provide an affordable, efficient, yet robust
source of data to explore how bodily synchrony relates to
conversation. A script only a few lines in length provides the
basic measures, and analyses can be performed quickly and
with very little effort by the researcher. While some semi-
automated analyses require researchers to specify individual
areas of interest to be analyzed (regions of interest [ROIs]
for MEA; e.g., Ramseyer & Tschacher, 2011), many FDMs—
including the one presented here—analyze overall body
movement (e.g., Boker, Xu, Rotondo, & King, 2002). By
combining existing FDM-based techniques and contributing
some additions, the FDM offered here provides an analyt-
ical method for researchers equipped only with a moderate-
to high-quality digital video recorder, standard analysis
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software (e.g., MATLAB), and very modest programming
skills. After we detail an example FDM, we will demon-
strate its use and effectiveness in a study on conversational
interaction.

Data collection and preparation

The presented FDM has been designed to require as little
direct supervision and specialized equipment as possible.
For data collection, researchers will only require a digital
video camera (preferably, high definition; no specific codec
required),2 mounted to be completely stable throughout the
recording. Although the light source need not remain com-
pletely stable, it should not be subject to large fluctuations.
In order to provide time-locked images, we recommend
using a single camcorder to record both participants (see
Fig. 1). These analysis methods can be adjusted to accom-
modate multiple cameras, so long as the sequences can be
accurately synchronized in time. However, the description
of our methods is written under the assumption that the
researcher is using a single camera.

The videos must then be uploaded to a computer and
segmented into image sequences; higher-quality image for-
mats (e.g., PNG) are preferable, although not required.
Assuming a high-quality recording, the images may remain
in the native camcorder resolution and do not require rescal-
ing. This can be done with a number of commercially
available video processing programs, including Apple’s
QuickTime or iMovie. For researchers using Apple prod-
ucts, we have included a sample AppleScript to automate
the image segmentation of videos in iMovie (see Appendix
1).3 Researchers may also use MATLAB and VideoReader
to import video directly, but we chose to use out-of-the-box
software to get image sequences in order to further minimize
programming requirements.

The sampling rate may vary according to researcher
needs and storage space. We have experimented with a
number of sampling rates and have found that 8 Hz affords
a great deal of detail without generating unwieldy amounts
of data. In contrast with existing methods, the FDM we
present can utilize full-color image sequences and does not
require the images to be transformed into grayscale or
normalized grayscale brightness. We calculate the frame
differences using the RGB code in MATLAB’s image
arrays. By analyzing images in full color, this FDM is able
to detect movement of an object of one color against a

background of a different color that may have the same
intensity. This means that we can track changes in colors
that may have the same overall intensity (i.e., the same
summed color codes, but differently distributed over the
red, green, and blue spectra). Any differences in intensity
of a person’s clothing and background will be captured with
this approach.

Data analysis with MATLAB

We have written and combined a series of MATLAB scripts
to create a single, short script (see Appendix 2)4 to automat-
ically analyze the bodily synchrony between interlocutors in
a single video frame. Using a “for loop,” the MATLAB
script sequentially loads each image of a given frame se-
quence. The images are halved so that each interlocutor’s
movement is on only one half of the frame; if all dyads do
not have the same halfway point, the researcher must des-
ignate the halfway points for any exceptions. The script then
compares the pixels of the current half-frame with the pixels
of the previous half-frame, yields a raw pixel change score
between the images, and then creates a standardized differ-
ence score between them (see Fig. 1 for visualization; see
Fig. 2 for sample sequence).

A second-order Butterworth low-pass filter is then ap-
plied to each sequence of half-images in lieu of a threshold

2 Although these methods are likely to capture movement effectively
even when given provided lower-quality recordings, lower resolutions
may be less sensitive to smaller body movements (e.g., postural sway,
facial expressions).

Fig. 1 Visualization of differencing process and sample participant
setup. In order to establish time-locked capture of both interlocutors’
movements, we recommend that participants be recorded facing one
another, in profile to the camera. Additionally, no moving objects (e.g.,
clocks) should be included in the frame. Each image is halved, and its
pixels are compared with those of its predecessor. Movement between
the consecutive images is registered as changes in pixels from one
image to the next. This image demonstrates the nonlagged comparison
of time series (i.e., movement of participant A at time t compared with
movement of participant B at time t)

3 The AppleScript code is also available for download from the first
author’s Web site: http://graduatestudents.ucmerced.edu/aloan/
Miscellany_files/imovie_segmentation.scpt.

4 The MATLAB code is also available for download from the first
author’s Web site: http://graduatestudents.ucmerced.edu/aloan/
Miscellany_files/sample_FDM.m.
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(e.g., Grammer et al., 1999) or band-pass filter (e.g.,
Nagaoka & Komori, 2008). A powerful but relatively sim-
ple filter, the Butterworth filter is characterized by normal-
ized cutoff frequency, a maximally flat passband, and a
stopband that slopes down to zero. By standardizing the
images and applying the low-pass filter, the script is able
to control for slight fluctuations in light sources (e.g., high-
frequency fluctuations of fluorescent lighting) while remain-
ing sensitive to slight movements (e.g., shifts in posture).
Without a filter, co-occurring sources of fluctuation across
the images may lead to false detection of synchronized
movement, since these fluctuations will occur in time for
both image sequences. All of this is done with a few simple
lines of code in MATLAB.

The script then combines the standardized scores for the
two sequences of half-images (i.e., the movement of each
individual within the dyad; see Fig. 3 for a sample time series
of standardized image scores) to derive cross-correlation coef-
ficients, the measure for interpersonal synchrony, at various

time lags. In other words, a correlation coefficient is calculated
for each relative time lag between the two interlocutors’ time
series. A lag of 0 would reflect the Pearson correlation coef-
ficient between the two sequences of movements, pairing
participant A’s movement at time t with participant B’s move-
ment at time t. A lag of −1 would shift one time series by one
step (i.e., pairing participant A’s movement at t with partici-
pant B’s movement at t + 1) and carry out a correlation again.
A lag of +1 would then shift in the other direction (i.e., pairing
participant A’s movement at t + 1 with participant B’s move-
ment at t) and calculate r.

If two individuals’ movements are synchronized, r will be
highest closer to a lag of 0, reflecting that changes in their
movement coincide in time. Unlike other channels of com-
munication (e.g., speech), both interlocutors are able to move
simultaneously without impeding the flow of the interaction.
Individuals spontaneously synchronize in dyadic rhythmic
movement tasks (e.g., Miles, Lumsden, Richardson, &
Macrae, 2011; Richardson, Marsh, Isenhower, Goodman, &

Fig. 2 Sample sequence of
differenced images. The image
sequence begins at the top of
the left-hand column, proceeds
down, then begins again at the
top of the right-hand column.
This represents the differencing
process applied to 1.5 s of
interaction
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Schmidt, 2007; Schmidt, Carello, & Turvey, 1990). These
findings suggest that interlocutors may exhibit some forms
of synchronous—rather than time-lagged—body movement
even in naturalistic contexts.

In addition to providing an objective quantification of
bodily synchrony, the cross-correlation coefficient across
time lags allows for a greater exploration of trends of lag-
ging and leading in bodily synchrony (for a discussion, see
Boker et al., 2002). Because we do not have any explicit
hypotheses about leading or following in this “role symmet-
rical” conversation in our sample study, we take the mean r
between −1 and +1 lag, −2 and +2 lag, and so on.5 The
MATLAB script then records all coefficients for analysis.
The entire analysis for a 10-min dyadic interaction requires
approximately 6 min on a 3.1-GHz Intel Core i5 Apple iMac
computer with 4-GB 1333-MHz DDR3 memory.

Quantifying synchrony

After retrieving the cross-correlation coefficients, research-
ers may use them in a variety of statistical tests. Researchers
may use the entire time series, a portion of the time series,
an average synchrony score, or the highest/lowest synchro-
ny scores, according to the research questions and statistical
tools available (see, e.g., Caucci, 2011, for some discussion
on the use of interpersonal synchrony scores in various
analyses). In order to confirm that this method works to
measure synchrony of body movement rather than co-
occurring artifacts, we ran two validation analyses, shown

in Appendix 3. In the next section, we present a larger study
that explores how synchrony is organized in naturalistic
interaction.

Interaction study

Much research has shown a possible link between affiliation
and synchrony (e.g., Bernieri et al., 1994; Chartrand &
Bargh, 1999; Lakin & Chartrand, 2003; Ramseyer &
Tschacher, 2008). However, this synchrony–affiliation link
can be modulated under various group circumstances (e.g.,
Miles et al., 2011). Here, we exemplify our methods in a
study that shows gross-body movement synchrony during
conversational interaction and tests a correlation of this
synchrony with liking between interlocutors.6

As a proof of concept, we investigated whether indi-
viduals involved in naturalistic conversations with a
broad affiliative prompt achieve bodily synchrony de-
tectable by the FDM outlined above. The correlation
coefficient should be higher closer to a lag of 0, be-
cause this correlation reflects the closest match in time.
As lag increases, the time series are being correlated at
a wider relative lag and are, therefore, further apart in
time; synchrony would predict a drop in the correlation
coefficients as time lag increases.

Existing literature suggests that synchrony should be
positively correlated with liking. Rather than using simple
correlation, the present study uses linear mixed-effects mod-
els for data analysis. We hypothesize, therefore, that the
model will predict an increase in r as levels of interpersonal
liking increase.

Fig. 3 Sample dyad movement
sequence over 60 s after the
Butterworth filter has been
applied to the time series.
Movement scores (y-axis) are
standardized, and each frame
(x-axis) is 125 ms. The blue line
tracks the movement of the
person on the right; the purple
line records the movement of
the person on the left

5 Both negative and positive raw correlations were used. The data in
Fig. 3 reflect these raw correlations. We did not apply Fisher’s Z-
transformation to these data because the correlations were too low to
be affected (i.e., correlations of magnitude less than .5). As is discussed
later, we standardized the correlations before using them in the linear
mixed-effects model in order to obtain beta weights instead of raw
change values.

6 The research we present is part of a larger study we are conducting on
differences in conversation types. Here, we focus on analysis of the
conversations that involved the basic goal of affiliation.
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Method

Participants

Participants were 40 undergraduate students at the University
of Memphis (mean age 0 22.08 years; females 0 32) and 22
undergraduate students at University of California, Merced
(mean age 0 19.36 years; females 0 17).7 All were awarded
extra credit for participating. All were fluent in English. They
participated in pairs, as 31 conversational dyads (19 female, 1
male, 11 mixed-sex), according to individual availability via
the participant pool’s online scheduler. Only two dyads (one
mixed-sex, one female) reported knowing one another prior to
participation in the study and were retained for all analyses.
One female dyad was removed from all analyses due to exper-
imenter error. Although a seemingly small sample size, this
exceeds established dyadic research sample sizes by a moder-
ate (e.g., 21 dyads; Ramseyer & Tschacher, 2008) or wide
(e.g., 4 dyads; Boker et al., 2002; Nagaoka & Komori, 2008)
margin.

Materials and procedure

After individually completing a brief questionnaire packet and
signing informed consent forms, participants were brought into
a private room. They were seated facing one another and were
recorded in profile (see Fig. 1) to ensure that their movements
were captured in a time-locked fashion. Interactions were
recorded using a Canon Vixia HF M31 high-definition digital
video camcorder mounted on a tripod to ensure stability. To
ameliorate the potential awkwardness of interacting with a
stranger, participants were allowed 3 min to introduce them-
selves and briefly get to know one another without the exper-
imenter present. Following the introductory period, the
experimenter prompted the participants to discuss entertain-
ment media (e.g., movies, music) that they both enjoyed. They
were instructed to talk for 10 min with the experimenter
present but outside their line of sight. Experimenters ensured
that all conversations lasted at least 8 min and issued additional
brief prompts to keep participants on topic (mean additional
prompts per conversation 0 0.54). Frames during which
prompts occurred were excluded from analysis. The partici-
pants were then brought to separate rooms and rated howmuch
they liked their partner on a 1–6 Likert scale. After completing
the measure, participants were brought together, debriefed, and
thanked for their participation.

Data handling and analysis

The participant videos were processed and analyzed
using the methods described in the preceding section.
We extracted a time series of body movement at 8 Hz
for each person, applied a second-order Butterworth
filter to each time series, calculated the cross-
correlation coefficients at each lag within a window of
±3 s (recommended by Richardson, Dale, & Tomlinson,
2009), and standardized the resulting coefficients. These
standardized coefficients served as the dependent varia-
bles in the following analyses.

Results

The standardized coefficients were predicted with a series of
linear mixed-effects models to investigate basic questions of
synchrony (as in Baayen, Davidson, & Bates, 2008; Boker
et al., 2002). Using the standardized cross-correlation coef-
ficients derived from the MATLAB script, bodily synchrony
was defined as concurrent movement in time. Therefore,
when absolute time lag is included as a predictor, r should
go down as lag increases (from a lag of 0—matching in time—
to lags reflecting greater temporal disparity). In addition,
we tested whether there is a relationship between affiliation
and r: We predicted that the more participants reported
affiliation, the higher the standardized r would be overall.
To test these questions, we included fixed factors of time
lag and affiliation. All models used dyad and participant as
random effects.

In the first model, we focused on synchrony as a function
of time lag. This basic model tested whether individuals are
more likely to move together in time. The model was found
to be significant, p < .001 [t(1842) 0 27.6],8 and predicts a
drop in the cross-correlation coefficient with each succes-
sive time lag (i.e., 125 ms) away from 0 (ß 0 −.22). This
indicates that interpersonal synchrony is highest toward a
time lag of 0, or that interlocutors’ movements coincide at
relatively the same amplitude in time. Put simply, individu-
als synchronize their body movements during conversation.

Importantly, the average peak of this function seems to be
closest to 0, rather than peaking at a lag greater than 0 (see
Fig. 4). Such a pattern suggests that interlocutors do not, on

7 Previous research has shown significant differences between the
interaction styles of same-sex and mixed-sex dyads, and such compo-
sition may have important ethological implications (see Grammer et
al., 1998). However, we exemplify our method by showing aggregate
synchrony across dyad types and reserve an analysis of gender for a
later study, since it is not an immediate goal of this methodological
presentation.

8 Degrees of freedom are not easily defined for mixed models; t-values
for mixed models, therefore, are often not included when reporting
results (e.g., Boker et al., 2002). Some (e.g., Bates, 2006) have argued
that reporting degrees of freedom can be misleading, given differences
in techniques for obtaining them. However, there are several sources
available for those who wish to report them (e.g., Baayen, 2008;
Baayen et al., 2008). Degrees of freedom reported here were estimated
using the LME function described therein. The t-values reported here
are based on MCMC sampling using the “pvals.fnc” function in R, as
described in Baayen et al., which also includes an excellent introduc-
tion to MCMC methods.
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average, lead or follow in body movement patterns and that
body movement is synchronized at the same relative phase.

We ran a second basic model to test whether reported
levels of interpersonal liking would significantly predict
the correlation coefficient. In this model, we included
all the data (each r at each lag) and participants’ ratings
of interpersonal liking. The model was not found to be
significant, p 0 .84 [t(1842) 0 .102], suggesting that
interpersonal bodily synchrony is not predicted by self-
report levels of liking alone.

Finally, we combined these two fixed factors into a single
model, using both lag and liking (centered) to predict the
correlation coefficient at each time lag. In this model, the
interaction term was significant, p < .001 [t(1840) 0 9.37,
ß 0 −.07]. The significance of the interaction term implies
that, although liking alone does not predict r values, it can
moderate the effects of time lag. To illustrate this, we split
our participants into two groups, high and low liking. As can
be seen in Fig. 4, individuals who like their partner more
achieve higher r near lag 0 than those who do not.

To confirm that the full model was the best-fitting
one, we compared the Akaike information criterion
(AIC) for each model. We observed that the AIC for
the first model (predicting synchrony as a function of
lag; AIC 0 1,401) and the second model (predicting
synchrony as a function of liking; AIC 0 2,140). The
AIC for the saturated model (predicting synchrony as a
function of lag and liking) showed it to be the model
best fitted to the data (AIC 0 1,355).

Discussion

In this brief study, we found that interlocutors synchronize
with their partners during affiliative conversations. The
results of this FDM analysis conform to patterns of results
from previous FDM-analyzed research (e.g., Nagaoka &
Komori, 2008; Ramseyer & Tschacher, 2008). In fact, our
analyses have extended these other naturalistic studies and
present novel insights into synchrony: We found that body
movement tended to be synchronized in time, such that
synchrony is greatest at a lag of 0. Thus, as a behavioral
channel used during conversation, gross body movement
may be patterned in-phase between two interlocutors. This
means that body movement synchrony has properties that
differ from synchrony in speech, which cannot be carried
out in-phase during conversation, due to turn-taking. Other
forms of movement have been demonstrated to have in-
phase synchrony between individuals (e.g., Miles et al.,
2011; Richardson et al., 2007; Schmidt, Morr, Fitzpatrick,
& Richardson, in press; Schmidt et al., 1990), and FDM
analyses have revealed bodily alignment in brief windows
of time (e.g., 1-min windows and 5-s time-lags, Ramseyer
& Tschacher, 2011; 10-min windows and 5-s time-lags,

Nagaoka & Komori, 2008). However, this is the first FDM-
based analysis demonstrating millisecond-to-millisecond syn-
chrony between interlocutors’ broad body movements.9

Although no main effect for liking was found, levels of
liking moderated interpersonal bodily synchrony: The more
participants liked one another, the more closely synchro-
nized their movements tended to be. Despite the lack of
main effect, the interaction effect fits with previous research
linking affiliation and body movement patterns (e.g.,
Chartrand & Bargh, 1999; Miles et al., 2011).

General discussion

We describe FDMs as promoting objective quantifica-
tion of interpersonal (bodily) synchrony, even in small
labs with minimal funding. Although several studies on
interpersonal interaction have used FDMs, there is little
work showing its direct relation to holistic ratings, and
there is no detailed methodological presentation of it in
the experimental literature. This article serves as an
introduction for experimental researchers to FDMs gen-
erally and to one simplified version (see Appendix 2).

Using similar methods to existing FDMs (e.g.,
Nagaoka & Komori, 2008; Ramseyer & Tschacher,
2008), we have provided MATLAB code for a simple
automated version, intended to minimize the required
amount of postrecording editing (see Appendix 2).
This simplified FDM provides researchers with added
flexibility in recording setups and, in conjunction
with AppleScripts to automate data preparation (see
Appendix 1), allows for an almost completely automat-
ed analysis of multiple interactions at a time. By broad-
ening data collection conditions and automating data
analysis, researchers will be able to spend more time
collecting dyads, leading to larger sample sizes. The use
of cross-correlation coefficients as an indicator of inter-
personal bodily synchrony, rather than generalized rating
scores, will give statistical analyses greater power.

We hope to expand this method to include ways of
parsing out the movement of individual body parts to
promote more fine-grained analysis of interpersonal syn-
chrony (e.g., posture, gesture). By combining these and
other automated methods (e.g., blob analysis; Lu et al.,

9 We did not explore synchrony relative to baseline, but methods are
available to do so. For example, Ramseyer and Tschacher (2008) offer
an elegant technique of window-wise shuffling. Shockley, Baker,
Richardson, and Fowler (2007) recommend using a “virtual pair”
analysis in which the researcher forms baseline dyads from individuals
of separate dyads in the experiment. These are relatively straightfor-
ward time-series methods that are outside the methodological scope of
this article, but we point the reader to these studies in case this is of
interest.
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2005), researchers may continue to refine the flexibility
and utility of FDM-based methodologies.

Limitations

Of course, FDMs are not without their limitations. The
FDM outlined here is intended to minimize cost and to
automate as much of the data analysis as possible. In
doing so, it loses detail afforded by other methods (e.g.,
movement direction and velocity, limb tracking). Other
FDMs offer researchers the ability to track movement in
designated areas (e.g., ROIs in MEA); these allow
researchers to manually designate specific areas in
which to track movement (e.g., limbs). However, even
these FDMs are generally blind to movement direction
and velocity. All FDMs, by using varying degrees of
automated methods to detect movement, tend to under-
estimate participants’ movements toward the camera(s).
Because fewer pixels change with medial movement
(relative to camera position), FDMs are far more sensi-
tive to lateral movement.

For researchers interested in finer-grained movement
characteristics, hand-coding techniques and motion
tracking may prove to be worth their respective invest-
ments. Hand-coding techniques have been widely used
and broadly accepted in inter- and intrapersonal syn-
chrony research. The significant time and training re-
quired to chart each movement from frame to frame
may be useful to researchers interested in tracking even
participants’ smallest movements.

Motion tracking may be a viable alternative to both
FDMs and hand-coding for those with ample funding
and strong data management resources. Currently, few
researchers employ these methods for synchrony re-
search, but these systems have unique capabilities that
would help to investigate other movement-related ques-
tions, as mentioned earlier. Motion-tracking systems
would permit an investigation of temporal movement
dynamics more precisely than hand-coding permits.
However, researchers should weigh the impact of such
an invasive technique against its sensitivity to move-
ment: Participants may be less likely to exhibit natural-
istic movement patterns while wearing a tight-fitting
motion-capture suit than when being filmed, which is
relatively noninvasive in comparison.

Here, we have also not discussed the issue of statio-
narity. This is an important issue in any time series
analysis using regression-based methods. Inspecting our
data, we have mostly found evidence of relative statio-
narity (i.e., relatively unchanged mean and variance
throughout each 10-min conversation). For further dis-
cussion of this issue and potential methods to manage
it, see Boker et al. (2002) and Ramseyer and Tschacher
(2008, 2011).

Future directions

Researchers are beginning to find evidence of interpersonal
synchrony across a number of channels (Louwerse, Dale,
Bard, & Jeuniaux, 2012). We believe that cross-channel

Fig. 4 Interaction effect for
time lag and liking on cross-
correlation coefficients. The y-
axis is the mean r, and the x-
axis is time lag in 125-ms seg-
ments. Self-report levels of lik-
ing have been divided into
high- and low-liking groups,
using a median split. The green
reflects the high-liking group;
the red reflects the low-liking
group
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questions—for example, the relation between body
movement and verbal turn-taking—are an essential next
step for this research area and will promote a deeper
understanding of the general and channel-specific mech-
anisms of synchrony. Although our efforts are presently
in the area of bodily synchrony, we plan to incorporate
other methods for studying additional channels of inter-
personal synchrony.

Using new and established methods, we have endeavored
to assemble a cost-effective and efficient methodology that
facilitates research into multimodal questions. All items
used in the setup are commercially available and highly
regarded by reviewers on commercial Web sites (e.g.,
Amazon). As was noted above, conversations were
recorded using a Canon Vixia HF M31 HD digital
video camera, mounted on a Sunpak PlatinumPlus
6000PG tripod. To facilitate linguistic analyses, each
interlocutor’s audio was recorded on a separate audio
channe l (us ing an Aud io -Techn i ca ATR3350
Omnidirectional Condenser Lavalier Microphone), at-
tached to an Azden CAM-3 On-Camcorder Mini
Audio Mixer. The setup as described above costs less
than $800; however, researchers may readily substitute
less expensive items (e.g., a webcam for the camcorder)
as needed.

We believe that this setup and methodology are flexible
enough to capture a number of modes of communication.
For example, researchers interested in questions of linguistic
alignment (e.g., priming; Brennan & Clark, 1996; Cleland &
Pickering, 2003; Kousidis & Dorran, 2009; Niederhoffer &
Pennebaker, 2002; Reitter, Moore, & Keller, 2010) will find
the two-channel recording method amenable to their re-
search (e.g., transcription; Kreuz & Riordan, 2011).
Additionally, by combining the FDM with pre- or postin-
teraction questionnaires, researchers interested in affective
synchrony (e.g., Chartrand & Bargh, 1999; Lakin &
Chartrand, 2003; Miles et al., 2011; Sadler et al., 2009;
Valdesolo & Desteno, 2011) may begin to investigate ques-
tions of affective alignment in conjunction with other chan-
nels of communication. By combining research into these
and other channels, the field can better understand the
functions of interpersonal synchrony. Further investigations
into cross-channel questions will serve to complement the
findings of early efforts in these issues (e.g., Louwerse et al.,
2012).
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Appendix 1 AppleScript for automating image segmentation

(* Note:  You must have first set the defaults on the image segmentation 
process before running this script.  To do so, open iMovie and select “Export
using QuickTime” under the “Share” menu.  Select “Movie to Image Sequence,” 
and set your preferences by clicking “Options.” *)

repeat 1 times # once per video 
 tell application "System Events" 
  tell application "iMovie" to activate 
  key code 125 
  key code 120 using control down 
  repeat 7 times 
   key code 124 
  end repeat 
  repeat 12 times 
   key code 125 
  end repeat 
  repeat 2 times 
   key code 36 
  end repeat 
 end tell 
 delay 420 
end repeat
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% PROCESSING LOOP % PROCESSING LOOP % PROCESSING LOOP % PROCESSING LOOP % 

% insert appropriate directory below 
cd('directory'); 

% basic variables 
h = gcf; 
lag_size = 150; 

% fetch images 
imgpath = 'img_*.jpg'; 
imgfiles = dir(imgpath); 
disp(['Found ' int2str(length(imgfiles)) ' image files.']) 

% create vectors for differenced image z-scores and L/R movement scores  
image_z_diffs = []; 
pLms = []; 
pRms = []; 

% begin loop through images 
for j=2:length(imgfiles) 
    disp(['Processing image: ' int2str(j) '.']);  

    % prep the files 
    file_name = imgfiles(j).name; 
    image_2 = imread(file_name); 
    file_name = imgfiles(j-1).name; 
    image_1 = imread(file_name); 

    % collapse images across color 
    image_2 = mean(image_2,3); 
    image_1 = mean(image_1,3);     

    % turn images into pixel z-scores 
    image_2 = (image_2 - mean(image_2(:)))./std(double(image_2(:))); 
    image_1 = (image_1 - mean(image_1(:)))./std(double(image_1(:)));    

    % difference, standardize, and store difference vectors 
    image_diff = abs(image_2 - image_1); 
    image_z_diffs = [image_z_diffs ; mean(image_diff(:))]; 

    % split images into L/R 
    pLm = mean(mean(mean(image diff(:,1:320,:)))); % change pixels as needed 

to half image; first colon in image_diff designates y-axis range, second range
designates x-axis range 
    pRm = mean(mean(mean(image_diff(:,321:end,:)))); % see above     

    % store split vectors 
    pLms = [pLms ; pLm]; 
    pRms = [pRms ; pRm]; 

end   

% apply Butterworth filter to results 
[bb,aa] = butter(2,.2);  
pLms = filter(bb,aa,pLms); 
pRms = filter(bb,aa,pRms);   

% save workspace  
save sample_FDM.mat; 
disp('Frame-Differencing for Sample Dyad Complete.') 

Appendix 2 MATLAB code for simple frame-differencing method
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Appendix 3 Two validation analyses of presented FDM

We wished to test that our frame-differencing method was
doing what we conceptualized—capturing the synchrony of
body movement during interaction. To do this, we complet-
ed two brief conceptual validation analyses, one using an
artificial scenario and another using a small subset of the
data analyzed in the experimental portion of the article.

Artificial scenario

Two people (the second author and another human, unfa-
miliar with the study) sat across from each other as de-
scribed in the Method section. They moved in a variety of
directions for 60 s and agreed to “attempt to synchronize
movements together.” Movements involved a variety of
pointing, nodding, and rhythmic motions, including the Y-
M-C-A dance. Interspersed within these bouts of coupling
were moments of nonmovement before engaging in the next
bout of synchrony. The video was deliberately designed to
produce synchrony in body motion.

When running the FDM (described in the main text
of the article), the cross-correlation profile demonstrates
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Fig. 5 Plot of cross-correlation coefficients derived from the FDM.
Mean r is plotted along the y-axis; time lag in 125-ms segments is
plotted along the y-axis. The spike around lag 0 indicates in-phase
synchrony of movements between interlocutors

% CALCULATE CORRELATIONS % CALCULATE CORRELATIONS % CALCULATE CORRELATIONS %

% create matrix for correlations  
dy_xcorrs = [];  
disp('Creating Correlations for Sample Dyad.')   

% cross-correlate and fill matrix  
dy_xcorr = xcov(pLms,pRms,lag_size,'coeff');  
dy_xcorrs = [dy_xcorrs  dy_xcorr];  
disp('Cross-Correlation for Sample Dyad Complete.')

% save workspace  
save sample_FDM.mat  
disp('MATLAB Workspace Saved.')   

% GENERATE TEXT FILE % GENERATE TEXT FILE % GENERATE TEXT FILE %   

% create csv file  
delete('sample.FDM.csv');  
data_out = fopen('sample.FDM.csv ','w');  
disp('Text File Created.')   

% fill the file with data  
for corr=1:301 
    % insert cross-correlation coefficient calculated above 
    fprintf(data_out,'%d,',eval(['dy_xcorrs(' int2str(corr) ')'])); 

    % add time slice (i.e., where along +/- 3s each coefficient was derived)
    fprintf(data_out,'%d,',corr);                 

end   

% close the data file  
fclose(data_out);  
disp('Text File Complete.'); 
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what is expected: a very sharp rise of r at a lag of 0
(p < .0001). The maximum r is much higher than our
conversational sample, as would be expected from the
artificial nature of the activity. Yet the shape of the
function is the same, reflecting a significant drop in r
as lag increases from 0 (see Fig. 5).

In order to test that the FDM values are based on
body movement and not some other artifact, the authors
separately analyzed the video in two different ways.
The first author analyzed the video using FDM. The
second author carried out a coarser second-by-second
coding of the video using a 1–7 Likert scale. The scale
was used to reflect, by the naked eye, how much
overall body movement was present (at 1 Hz). This
process and time scale are akin to holistic ratings of
body movement described earlier in the article. This
was done separately for the left and right persons in
the video. Crucially, when one participant’s movement
was coded, it was done blindly to the movement of the
other participant (i.e., only one half of the video was
seen when coding). The coding was straightforward
given the artificial nature of the task. The cross-
correlation function for these human judgments matches
closely with that obtained with the FDM (see Fig. 6).

Because the 8-Hz FDM-derived time series has con-
siderably more data points than the 1-Hz hand code, we
down-sampled the FDM time series to the size of the
hand-coded body change values. We then compared
them with a simple Pearson correlation and obtained a
strong correlation, r 0 .68, p < .0001. The figure of the
scatterplot for the movement of both people (blue 0

right, black 0 left) is shown in Fig. 7.

Subset of experimental data

In order to verify that similar patterns hold when looking at
experimental data, 2 min of two separate dyads’ conversa-
tions were analyzed using the methods outlined above. Two
undergraduate research assistants (blind to the study and
results) were recruited to code the movement. Each assistant
rated one of two 2-min subsets of participant dyads’ con-
versations, chosen semirandomly. Both were instructed to
rate the second-by-second (1 Hz) movement of each partic-
ipant (again, separately and blind to the movement of the
other participant), using a 1–7 Likert scale. The only guide-
line given to raters was to remain consistent in their subjec-
tive evaluations of the movement.

The down-sampled FDM time series of the two conver-
sation subsets were compared with the holistic ratings using
simple Pearson correlations. Again, we found a strong cor-
relation for each, r 0 .66, p < .001, and r 0 .67, p < .001.

Summary

These validations are deliberately simple. The first demon-
strates that, in deliberately synchronized video clips, syn-
chrony produces a marked cross-correlation peak at a lag of
0 and that human judgment of the video corresponds with a
separate analysis based on the FDM. The second confirms
that, in experimental data, the FDM provides a measure of
actual movement, rather than spurious co-occurring phe-
nomena (e.g., light fluctuations). By executing these analy-
ses as straightforwardly and simply as possible, we
attempted to confirm our methodology’s effectiveness with
intuitive holistic ratings (e.g., Bernieri et al., 1988).

Fig. 6 Plot of cross-correlation coefficients derived from Likert rat-
ings. Mean r is plotted along the y-axis; time lag in 1-s segments is
plotted along the y-axis. The spike around lag 0 indicates in-phase
synchrony of movements between interlocutors

Fig. 7 Plot of correlations between movement registered by the FDM
and Likert ratings. The FDM-derived movements lie along the y-axis,
and the Likert ratings lie along the x-axis. The blue circles indicate
movement by the person on the right, while the black crosses indicate
movement by the person on the left
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