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Outline: Part 2

• Theoretical preamble 
– Coupled conversation partners... 

• The cross recurrence plot and 
quantification (CRQA) 

• Results obtained using these analyses

Coupling in Other Dimensions

• Face-to-face communication 
involves multi-dimensional 
management 
– Eyes, visual common ground 
– Gestures 
– Pitch, rate, etc. 
– Words, sentences, topics, etc. 
– Turn taking



Language? Coupling

• An analogy to the beam is 
perhaps the “common 
ground” shared between 
conversants 
– Knowledge (local, global), 

goals, affinity, etc. 
• Like the pendula, 

conversants may synchronize 
in a similar manner

Language Usage
• Synchrony in interaction 

(Condon & Ogston, 1966). 
• Accommodative processes 

(Giles and colleagues, 70’s; 
Giles & Coupland, 1991). 

• Conversation as a joint activity 
(Clark, 1996). 

• Alignment of linguistic 
structures across multiple 
levels (Pickering & Garrod, 
2004).

Language Development
• Synchronization of bodily 

movements with speech (e.g., 
Condon & Sander, 1974). 

• Synchrony between caregivers 
and their own children (e.g., 
Bernieri, et al., 1988). 

• Mother-child synchrony offered 
as one factor influencing child 
socialization, e.g., antisocial 
behavior (Criss, et al., 2003).



Alignment = Recurrence

• At least 4 benefits to recurrence 
methods for exploring psycholinguistic 
alignment 

• Benefit 1: Naturally applied to 
naturalistic data 

• Benefit 2: Amenable to categorical units 
of measure (e.g., words, sentence 
structure, topic, etc.)

Alignment = Recurrence

• Benefit 3: Flexible exploration of coupling 
dynamics (e.g., temporal lag) 

• Benefit 4: Flexible metrics (e.g., syntactic 
similarity, semantic similarity, etc.) 

• Benefit 5: Despite such extensive, flexible 
application, the result is subjected to common 
statistical tests (e.g., GLM, etc.)

Mutuality, “coordination”
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diagonal recurrence profile
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Recap: Auto Recurrence
“Auto recurrence”: 

Same time series on x and y axis 

Points show where series is recurring 
in time... 

Always symmetrical around line  
of identity 

Quantify plot: 
How many points, overall? (%REC) 
How often in sequences (%DET) 
How long a sequence on avg.? (mean line) 
...

t

t

Recap: Cross Recurrence
“Cross recurrence”: 

Different time series on x and y axis 
(e.g., network 1, network 2) 

Points show when series are  
in the same state 

Most often not symmetrical around  
line of synchronization (main  
diagonal) 

Quantify plot: 
How many points, overall? (%REC) 
How often in sequences (%DET) 
How long a sequence on avg.? (mean line) 
...

t

t



Recap: Cross Recurrence

“Cross recurrence” additional 
analysis: 

Exploit the line of synchronization 
to see whether two systems are 
coupled: more points 
(“matches” in their behavior) 
should fall at or around  
the line of synchronization. t

t %

0

%

%

diagonal recurrence profile
t

t

Exercise 1: Diag. Rec. Profile

Which networks are coupled?

Networks 1 & 2 Networks 1 & 6



Networks 1 & 2 Networks 1 & 6

Network 1 

Network 2 

Network 3

Network 4 

Network 5 

Network 6



June 19, 2010 15:6 ws-ijbc˙REVISE

International Journal of Bifurcation and Chaos
c� World Scientific Publishing Company

NB: This paper is for the special issue edited by Prof. Norbert Marwan

NOMINAL CROSS RECURRENCE AS A GENERALIZED LAG
SEQUENTIAL ANALYSIS FOR BEHAVIORAL STREAMS

RICK DALE
Department of Psychology

The University of Memphis, Memphis, TN 38152, USA
radale@memphis.edu

ANNE S. WARLAUMONT
School of Audiology and Speech-Language Pathology

The University of Memphis, Memphis, TN 38105, USA
anne.warlaumont@memphis.edu

DANIEL C. RICHARDSON
Cognitive, Perceptual, & Brain Sciences

University College London, London, WC1E 6BT, UK
daniel@eyethink.org

Received (to be inserted by publisher)

We briefly present lag sequential analysis for behavioral streams, a commonly used method in
psychology for quantifying the relationships between two nominal time series. Cross recurrence
quantification analysis (CRQA) is shown as an extension of this technique, and we exemplify
this nominal application of CRQA to eye-movement data in human interaction. In addition,
we demonstrate nominal CRQA in a simple coupled logistic map simulation used in previous
communication research, permitting the investigation of properties of nonlinear systems such as
bifurcation and onset to chaos, even in the streams obtained by coarse-graining a coupled non-
linear model. We end with a summary of the importance of CRQA for exploring the relationship
between two behavioral streams, and review a recent theoretical trend in the cognitive sciences
that would be usefully informed by this and similar nonlinear methods. We hope this work en-
courages scientists interested in general properties of complex, nonlinear dynamical systems to
apply emerging methods to coarse-grained, nominal units of measure, as there is an immediate
need for their application in the psychological domain.

Keywords: recurrence; cross recurrence; psychology; coupling; language

1. Introduction

Psychologists often collect time series in the form of “behavioral streams”: measures on a nominal scale
that reflect events in a person’s behavior or experiences during the day or a laboratory task. For example,
a psychologist may simply register any point at which a person is smiling or frowning (or, neither). Doing
this throughout the day will produce a behavioral stream of nominal “states” that a person was in: smile,
frown, or neither. There are several ways to carry out this coding [Bakeman et al., 2005]. Commonly,
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Fig. 3. The left-most plot is a mean phi coe�cient between matching states, at given lags, across the 6 categories, for the
time series shown in Fig. 2; The middle plot shows a cross recurrence plot (CRP) between the nominal two time series shown
in Fig. 2 with m = 1, ⇥ = 1 sample (33ms), and � = 0; the right-most plot shows the diagonal-wise recurrence rate, RR� , of
that CRP. Note the similarity between the mean phi coe�cient on the left and the diagonal-wise recurrence rate to the right.

⇥ =
CT1,1CT2,2 � CT1,2CT2,1⇥�

CT�

(3)

CT� represents the set of four marginal sums (row and column) of the CT . When the CT is larger than
2⇥ 2, as it is in this case, one can reduce it to the test of interest in the following simple way. First, let k
be one of the states in the series. Create a 2 ⇥ 2 CT where states are recoded into k and not-k. Here, let
⇥k(�) represent the phi coe⌅cient for this given category k at lag � .

We can repeat this procedure for each possible category, k = 1, ..., 6. The mean phi coe⌅cient will now
give the average binary correlation between the time series across the 6 categories across all lags. This is
shown in Fig. 3, left. In this sense, lag sequential analysis is carrying out an average binary cross-correlation
between the two time series. Fig. 3 shows that there is a highest correlation at a lag of approximately � = 2s,
showing that the optimal covariation is occurring at approximately a two-second delay for this particular
listener to couple his or her eye movements to the speaker.

Often it is desirable to measure states across the two time series at lag � that are not necessarily the
same, matching states. In terms of the CT , this is equivalent to inspecting the o� diagonals, where i ⇤= j.
For example, though we do not carry out this analysis here, it may be the case that fixating one panel (i.e.,
television character) may accompany looks to a di�erent panel (i.e., another relevant character). These
contexts arise regularly in lag sequential analysis. The procedure just described for using mean ⇥k(�) to
characterize exact matching is adapted easily. Instead of recoding into k and not-k, we recode columns
and rows di�erently depending on the test of interest. This test may consist of finding lags at which one
time series is in state k = i while the other time series is in state k = j. This reduces to constructing a
CT with rows reflecting i and not-i states, and columns j and not-j. The cell entry CTi,j(�) in this 2⇥ 2
table will now represent the o�-diagonal sum in the original, full table. The phi coe⌅cient can now easily
be calculated in these cases and averaged with any other o�-diagonal matches of interest.

It is important to note that there are many variants to these kinds of analyses, and we show only
the most rudimentary. In addition, many issues of coding, and the testing and reporting of statistical
significance are addressed in lag sequential analysis that we do not consider here for lack of space [Bakeman
& Gottman, 1997]. However, the general observations we have made reflect the kernel analyses characteristic
of lag sequential analysis.

4. CRQA of the Stream

CRQA, as described in detail in various places [Marwan et al., 2007; Marwan & Kurths, 2002; Zbilut et al.,
1998], is easily applied to these example eye-movement time series by choosing any dimension (m) and

Dale, R., Warlaumont, A. S., & Richardson, D. C. (2011). Int. J. of Bifurcation and Chaos.

cross correlation recurrence

CHILDES

• MacWhinney (2000) 
• Large database of child-caregiver 

interaction corpora. 
• 3 CHILDES corpora (Chouinard & 

Clark, 2003) 
– Brown’s Sarah (1973); Kuczaj’s Abe (1976); 

Sachs’ Naomi (1983) 
• Transcripts coded in a variety of ways.

abe030.cha



Lexical Time Series

glad 
making 
rug 
hall 
. 
. 
.

Kid:

154 
1543 
13 
16504 
. 
. 
.

Data…

Cross Recurrence Plot (CRP)

Caregiver

Kid

Dale & Spivey, 2005, Proc. CogSci.

abe030.cha



Syntactic Time Series

• Raw syntactic time series for caregiver and 
child 
– No plural marking (subject-verb agreement) 
– Auxiliary verbs used 
– Proper nouns used 

• 6 most common: 
– Verbs (22%), nouns (15%), pronouns (15%), 

communicators (6%), determiners (6%) , 
prepositions (6%)

Dale & Spivey, 2006, Lang. Learn.

• Window size: 2 (bigrams) 
• Sentence boundaries permitted to generate 

recurrence (e.g., ... Noun # ...) 
• Recurrence point when bigrams are the same

Caregiver: Det Noun Verb # Prep Noun...

Child: Noun Verb Noun # Prep Det Noun...

t

t

Plot Conditions

Age Transcript Child Caregiver(s)

~2 yrs. 1
2
3
4
5
. 
. 
.

Time Series

same
next

~5 yrs.

~1 week

Results: % Recurrence

% Dale & Spivey, 2005

Same Next

%
*

*
*

0

2.5



A simple extension: %DREC (+/- 20)

-20

+20

%
%

0

-70, +70

-20, +20

%
Exercise 2: Diag. Rec. Profile

Using time series of words…

Diagonal %REC Profile Results: %DREC (+/- 50)

%

0.000

2.500
Same Next

%
*** *** ***

(+/- 50)

Dale & Spivey, 2006, Lang. Learn.

Sarah Abe Naomi



Dyadic Coupling

• Responsiveness of caregiver may be crucial to 
development... (Lewis, Fogel, Oller, etc.) 

• Feedback loop hypothesis: Vocalization by 
infant supported by adult responses, which 
elicits further vocalization, etc. (Warlaumont 
et al., 2010; Warlaumont et al., 2014). 

• Suggests that language disorders may involve 
a breakdown of this social dynamic. 

• E.g.: ASD.
lenafoundation.org

Warlaumont et al., 2014



Visual “Common Ground”

• Joint attention often considered fundamental 
to emergence of language 
– Evolution (Tomasello, 2001) 
– Development (Baldwin, 1995) 

• Coordination of attention across visual field 
fundamental to communication (Clark, 1996) 
– Gestures, actions, pointing, etc. (e.g., Clark & 

Krych, 2004)

Eye Movements and Language

• Speakers fixate objects to be named ~1000ms 
prior to naming them (e.g., Griffin & Bock, 
2000) 

• Listeners may require approx. 500-1000ms to 
fixate on a mentioned object (e.g., Tanenhaus 
et al., 1995) 

• Time course of eye-movement coordination in 
ongoing comprehension?

Eye-Tracking & Comprehension

• 4 individuals generated narrative stimuli 
• Viewed scene w/ television characters, discuss 

for ~60 seconds 
• Eyes tracked 

– Which panel/character was being fixated was 
sampled at 33ms 

– Unique speaker eye-movement time signature 
over 60 seconds...

Listeners

• 49 participants acted as listeners 
• On headphones, listened to stories 

recounted by speakers 
• Eyes similarly tracked 
• Tested w/ 4 comprehension questions 

concerning remarks by the speakers



Speaker Accurate listener Inaccurate listener
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Fig. 2. The two nominal time series from an example dyad among the 49 from the original study. The language of the speaker
proceeds for approximately one minute while the other participant listens in. Each 33ms interval produces a numeric value
representing the panel that was fixated. The occasional absence of a numeric value at some time points means that participants
were not looking at any of the panels.

television shows in the US (Friends and The Simpsons). A 2 � 3 visual array was used containing pictures
of the characters. Because only one member of a pair is doing the talking, the second participant (the
listener) is coupled to the speaker and his or her behavioral stream (i.e., nominal eye-movement time
series) exhibits a distinct lag relationship. We show this below.

3. Sequential Analysis of the Stream

Lag sequential analysis is a suite of methods related to contingency table analysis, including a variety of
extensions that have become part of a standardized set of analytic strategies and techniques [Bakeman &
Quera, 1995a]. To begin in the case of our example data, one would produce a contingency table (CT ) of
relative eye positions at a chosen lag. A CT represents the relationship between states in one time series
(e.g., the speaker) and states in another time series (e.g., the listener) at a given lag, � . Rows of the CT may
reflect speaker states and are ordered consistently with the columns of the CT , representing the listener’s
states. Numbers in the cells represent times each state in a row’s relevant time series (the speaker) was
followed with lag � by the corresponding column’s state in the listener. This can be expressed simply as:

CTi,j(�) =
t=T��⇥

t=1

q(t) (1)

q(t) =
�

1 if x(t) = i and y(t + �) = j
0 otherwise (2)

Where CT (�) is the contingency table at lag � , CTi,j(�) is the cell entry for the ith and jth states between
nominal time series x and y, and T is total time. The function q(t) is simply a membership-sum function
for the CT which specifies if at time t for its relative lag whether x(t) and y(t + �) have the same specified
states i and j (= 1) or not (= 0). (Note, t and � are in sample units, where T = N33ms, and N is the
number of samples.)

In many cases, one may simply be interested in whether states are being matched between the two
series. In other words, this analysis would focus on whether the speaker and listener are “doing the same
thing” at lag � . In this case, one simply attends to the entries along the diagonal (i = j) of the CT ,
since rows and columns are ordered consistently for both time series. When a CT is of size 2 � 2 the phi
coe⇤cient gives the correlation between the two binary variables:
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for the CT which specifies if at time t for its relative lag whether x(t) and y(t + �) have the same specified
states i and j (= 1) or not (= 0). (Note, t and � are in sample units, where T = N33ms, and N is the
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In many cases, one may simply be interested in whether states are being matched between the two
series. In other words, this analysis would focus on whether the speaker and listener are “doing the same
thing” at lag � . In this case, one simply attends to the entries along the diagonal (i = j) of the CT ,
since rows and columns are ordered consistently for both time series. When a CT is of size 2 � 2 the phi
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1 2 3

4 5 6

Fig. 1. The experimental context for collecting nominal time series. The left person is speaking about a 2 � 3 grid displaying
television characters while the right person listens in. The eye movements generate coarse-grained nominal series of numbers
1-6 for approximately 60 seconds while the speaker narrates.

this coding activity produces a stream that is a time series, as commonly construed: a sequence of states,
obtained by regular sampling, along some dimension representing what a person is up to. This data-
collection context is pervasive in psychology, and there are many qualitative and discrete methods available
for it [Agresti, 2002; Strauss, 1987]. Among the longest standing and most prominent frameworks for
extracting dependencies and patterns in these behavioral streams is called lag sequential analysis [Sackett,
1979; Bakeman & Gottman, 1997; Bakeman & Quera, 1995a]. Lag sequential analysis is a wide-ranging
application of the analysis of contingency tables, such as through log-linear modeling [Bakeman & Quera,
1995b].

This brief paper describes this method and compares it to cross recurrence quantification analysis
(CRQA). Specifically, we show that when quantifying the relationship between behavioral streams of two
people interacting in some way (e.g., in conversation), lag sequential analysis can be seen as proportional
to measures obtained from some version of CRQA. Extending this lag sequential method by integrating it
with CRQA has the benefit of further connecting psychological explorations to a growing understanding of
complex systems and their behavior. Already it is being pursued in the analysis of behavioral time series on
continuous scales, such as postural coordination between two people talking [Shockley et al., 2003]. CRQA,
a method that may be described as a form of generalized cross-correlation [Marwan et al., 2007], naturally
extends to nominal behavioral streams by using numeric codes and a radius of zero to reflect state matches
[Orsucci et al., 1999]. Indeed, related methods have been developed in natural language processing with
dot plots [Ducasse et al., 1999] and sequencing methods in molecular biology [Von Heijne, 1987]. Below,
we first summarize our sample human data used here to demonstrate lag sequential analysis and CRQA.
We then compare these methods, and show that CRQA loosely encompasses sequential analysis, but can
also reveal nonlinear patterns in coupled systems.

2. Example Data Streams

In the past two decades, eye movements have become a common source of behavioral data in psychology
and are often used to produce nominal time series [Spivey et al., 2009]. Consider Fig. 1. The numbered
panels compose a shared visual space that participants can discuss. During a separated interaction (e.g.,
by talking on the phone), participants discuss the panels (presented on two computer monitors), and their
eyes are tracked while they do this. At 33ms intervals, a nominal measure can be extracted that simply
represents the panel number that is being fixated at that moment (see Fig. 2). We have used this context
to carry out several studies employing simple recurrence measures from CRQA [Richardson et al., 2007;
Richardson & Dale, 2005; Richardson et al., 2009]. Here we use a set of subject pairs (N = 6) from an
earlier experiment for demonstration [Richardson & Dale, 2005]. In this work, one participant listens to
the language of another participant while they both look upon a panel of characters from two prominent
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continuous scales, such as postural coordination between two people talking [Shockley et al., 2003]. CRQA,
a method that may be described as a form of generalized cross-correlation [Marwan et al., 2007], naturally
extends to nominal behavioral streams by using numeric codes and a radius of zero to reflect state matches
[Orsucci et al., 1999]. Indeed, related methods have been developed in natural language processing with
dot plots [Ducasse et al., 1999] and sequencing methods in molecular biology [Von Heijne, 1987]. Below,
we first summarize our sample human data used here to demonstrate lag sequential analysis and CRQA.
We then compare these methods, and show that CRQA loosely encompasses sequential analysis, but can
also reveal nonlinear patterns in coupled systems.

2. Example Data Streams

In the past two decades, eye movements have become a common source of behavioral data in psychology
and are often used to produce nominal time series [Spivey et al., 2009]. Consider Fig. 1. The numbered
panels compose a shared visual space that participants can discuss. During a separated interaction (e.g.,
by talking on the phone), participants discuss the panels (presented on two computer monitors), and their
eyes are tracked while they do this. At 33ms intervals, a nominal measure can be extracted that simply
represents the panel number that is being fixated at that moment (see Fig. 2). We have used this context
to carry out several studies employing simple recurrence measures from CRQA [Richardson et al., 2007;
Richardson & Dale, 2005; Richardson et al., 2009]. Here we use a set of subject pairs (N = 6) from an
earlier experiment for demonstration [Richardson & Dale, 2005]. In this work, one participant listens to
the language of another participant while they both look upon a panel of characters from two prominent
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Fig. 3. The left-most plot is a mean phi coe�cient between matching states, at given lags, across the 6 categories, for the
time series shown in Fig. 2; The middle plot shows a cross recurrence plot (CRP) between the nominal two time series shown
in Fig. 2 with m = 1, ⇥ = 1 sample (33ms), and � = 0; the right-most plot shows the diagonal-wise recurrence rate, RR� , of
that CRP. Note the similarity between the mean phi coe�cient on the left and the diagonal-wise recurrence rate to the right.

⇥ =
CT1,1CT2,2 � CT1,2CT2,1⇥�

CT�

(3)

CT� represents the set of four marginal sums (row and column) of the CT . When the CT is larger than
2⇥ 2, as it is in this case, one can reduce it to the test of interest in the following simple way. First, let k
be one of the states in the series. Create a 2 ⇥ 2 CT where states are recoded into k and not-k. Here, let
⇥k(�) represent the phi coe⌅cient for this given category k at lag � .

We can repeat this procedure for each possible category, k = 1, ..., 6. The mean phi coe⌅cient will now
give the average binary correlation between the time series across the 6 categories across all lags. This is
shown in Fig. 3, left. In this sense, lag sequential analysis is carrying out an average binary cross-correlation
between the two time series. Fig. 3 shows that there is a highest correlation at a lag of approximately � = 2s,
showing that the optimal covariation is occurring at approximately a two-second delay for this particular
listener to couple his or her eye movements to the speaker.

Often it is desirable to measure states across the two time series at lag � that are not necessarily the
same, matching states. In terms of the CT , this is equivalent to inspecting the o� diagonals, where i ⇤= j.
For example, though we do not carry out this analysis here, it may be the case that fixating one panel (i.e.,
television character) may accompany looks to a di�erent panel (i.e., another relevant character). These
contexts arise regularly in lag sequential analysis. The procedure just described for using mean ⇥k(�) to
characterize exact matching is adapted easily. Instead of recoding into k and not-k, we recode columns
and rows di�erently depending on the test of interest. This test may consist of finding lags at which one
time series is in state k = i while the other time series is in state k = j. This reduces to constructing a
CT with rows reflecting i and not-i states, and columns j and not-j. The cell entry CTi,j(�) in this 2⇥ 2
table will now represent the o�-diagonal sum in the original, full table. The phi coe⌅cient can now easily
be calculated in these cases and averaged with any other o�-diagonal matches of interest.

It is important to note that there are many variants to these kinds of analyses, and we show only
the most rudimentary. In addition, many issues of coding, and the testing and reporting of statistical
significance are addressed in lag sequential analysis that we do not consider here for lack of space [Bakeman
& Gottman, 1997]. However, the general observations we have made reflect the kernel analyses characteristic
of lag sequential analysis.

4. CRQA of the Stream

CRQA, as described in detail in various places [Marwan et al., 2007; Marwan & Kurths, 2002; Zbilut et al.,
1998], is easily applied to these example eye-movement time series by choosing any dimension (m) and
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Results

• Higher eye-movement coordination, 
higher comprehension performance 
– At 2s, %REC significantly related to 

performance on questions (r = .33, p < .05) 
• Shorter coordination lag, higher 

comprehension 
– Lag of maximum %REC significantly 

related (r = -.34, p < .05)

Richardson & Dale, 2005, Cog. Sci.

Exercise 3: Dialogue

Eye-movements during dialogue



Richardson, Dale, & Kirkham, 2007, Psych. Sci.

More CHILDES

• Is syntactic coupling robust over 
window sizes? 
– Window sizes: 2, 3, and 4 

• Does caregiver or child lead 
coordination? 
– Are there significant patterns of leading/

following in child-caregiver interaction?

Results: %REC

% Dale & Spivey, 2006

2 3 4

%

Who leads?

t

t



Leading and Following

• Abe exhibits small tendency to lead caregiver 
– Abe farthest in grammatical development (mean-

length of utterance) 
• Sarah exhibits small tendency to follow 

caregiver 
– Sarah delayed relative to Abe in grammatical 

development 
• Naomi shows no significant leading or 

following across transcripts

Leading over time?

sc
or

e

Abe SarahNaomi

t

- caregiver(s)
- child

- shuffled child

Dale & Spivey, 2006

~2 yrs. ~5 yrs.

Extract Profile Features

Extensive work 
has shown 
entrainment: 
they come to 
employ similar 
phrases...

Tangram task: two people work together 
to identify unfamiliar shapes. 
  1 is director ; 1 is matcher

“The guy kind of carrying the triangle and walking...” 
        
       “Oh yeah, oh yeah...” 

Round 1

“The guy with the triangle again...” 

       “Yup...” 

Round 2

“Triangle guy...” 
         
       “Got it...” 

Round 3

Dale, Kirkham, & Richardson, 2011, Front. Psych.
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Fig. 1. The experimental context for collecting nominal time series. The left person is speaking about a 2 � 3 grid displaying
television characters while the right person listens in. The eye movements generate coarse-grained nominal series of numbers
1-6 for approximately 60 seconds while the speaker narrates.

this coding activity produces a stream that is a time series, as commonly construed: a sequence of states,
obtained by regular sampling, along some dimension representing what a person is up to. This data-
collection context is pervasive in psychology, and there are many qualitative and discrete methods available
for it [Agresti, 2002; Strauss, 1987]. Among the longest standing and most prominent frameworks for
extracting dependencies and patterns in these behavioral streams is called lag sequential analysis [Sackett,
1979; Bakeman & Gottman, 1997; Bakeman & Quera, 1995a]. Lag sequential analysis is a wide-ranging
application of the analysis of contingency tables, such as through log-linear modeling [Bakeman & Quera,
1995b].

This brief paper describes this method and compares it to cross recurrence quantification analysis
(CRQA). Specifically, we show that when quantifying the relationship between behavioral streams of two
people interacting in some way (e.g., in conversation), lag sequential analysis can be seen as proportional
to measures obtained from some version of CRQA. Extending this lag sequential method by integrating it
with CRQA has the benefit of further connecting psychological explorations to a growing understanding of
complex systems and their behavior. Already it is being pursued in the analysis of behavioral time series on
continuous scales, such as postural coordination between two people talking [Shockley et al., 2003]. CRQA,
a method that may be described as a form of generalized cross-correlation [Marwan et al., 2007], naturally
extends to nominal behavioral streams by using numeric codes and a radius of zero to reflect state matches
[Orsucci et al., 1999]. Indeed, related methods have been developed in natural language processing with
dot plots [Ducasse et al., 1999] and sequencing methods in molecular biology [Von Heijne, 1987]. Below,
we first summarize our sample human data used here to demonstrate lag sequential analysis and CRQA.
We then compare these methods, and show that CRQA loosely encompasses sequential analysis, but can
also reveal nonlinear patterns in coupled systems.

2. Example Data Streams

In the past two decades, eye movements have become a common source of behavioral data in psychology
and are often used to produce nominal time series [Spivey et al., 2009]. Consider Fig. 1. The numbered
panels compose a shared visual space that participants can discuss. During a separated interaction (e.g.,
by talking on the phone), participants discuss the panels (presented on two computer monitors), and their
eyes are tracked while they do this. At 33ms intervals, a nominal measure can be extracted that simply
represents the panel number that is being fixated at that moment (see Fig. 2). We have used this context
to carry out several studies employing simple recurrence measures from CRQA [Richardson et al., 2007;
Richardson & Dale, 2005; Richardson et al., 2009]. Here we use a set of subject pairs (N = 6) from an
earlier experiment for demonstration [Richardson & Dale, 2005]. In this work, one participant listens to
the language of another participant while they both look upon a panel of characters from two prominent
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1-6 for approximately 60 seconds while the speaker narrates.

this coding activity produces a stream that is a time series, as commonly construed: a sequence of states,
obtained by regular sampling, along some dimension representing what a person is up to. This data-
collection context is pervasive in psychology, and there are many qualitative and discrete methods available
for it [Agresti, 2002; Strauss, 1987]. Among the longest standing and most prominent frameworks for
extracting dependencies and patterns in these behavioral streams is called lag sequential analysis [Sackett,
1979; Bakeman & Gottman, 1997; Bakeman & Quera, 1995a]. Lag sequential analysis is a wide-ranging
application of the analysis of contingency tables, such as through log-linear modeling [Bakeman & Quera,
1995b].

This brief paper describes this method and compares it to cross recurrence quantification analysis
(CRQA). Specifically, we show that when quantifying the relationship between behavioral streams of two
people interacting in some way (e.g., in conversation), lag sequential analysis can be seen as proportional
to measures obtained from some version of CRQA. Extending this lag sequential method by integrating it
with CRQA has the benefit of further connecting psychological explorations to a growing understanding of
complex systems and their behavior. Already it is being pursued in the analysis of behavioral time series on
continuous scales, such as postural coordination between two people talking [Shockley et al., 2003]. CRQA,
a method that may be described as a form of generalized cross-correlation [Marwan et al., 2007], naturally
extends to nominal behavioral streams by using numeric codes and a radius of zero to reflect state matches
[Orsucci et al., 1999]. Indeed, related methods have been developed in natural language processing with
dot plots [Ducasse et al., 1999] and sequencing methods in molecular biology [Von Heijne, 1987]. Below,
we first summarize our sample human data used here to demonstrate lag sequential analysis and CRQA.
We then compare these methods, and show that CRQA loosely encompasses sequential analysis, but can
also reveal nonlinear patterns in coupled systems.

2. Example Data Streams

In the past two decades, eye movements have become a common source of behavioral data in psychology
and are often used to produce nominal time series [Spivey et al., 2009]. Consider Fig. 1. The numbered
panels compose a shared visual space that participants can discuss. During a separated interaction (e.g.,
by talking on the phone), participants discuss the panels (presented on two computer monitors), and their
eyes are tracked while they do this. At 33ms intervals, a nominal measure can be extracted that simply
represents the panel number that is being fixated at that moment (see Fig. 2). We have used this context
to carry out several studies employing simple recurrence measures from CRQA [Richardson et al., 2007;
Richardson & Dale, 2005; Richardson et al., 2009]. Here we use a set of subject pairs (N = 6) from an
earlier experiment for demonstration [Richardson & Dale, 2005]. In this work, one participant listens to
the language of another participant while they both look upon a panel of characters from two prominent
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Exercise 4: Leading, following

Which networks are coupled; 
which ones are leading?
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Table 1. Overview of coding schemes for face, gesture, dialog act, and language actions (Ekman et al, 2002 codes in parentheses) 

Modality Group Channels 

Face And Head Mouth Eyes Eye Brows Head 

 Smile (AU12) Blink (AU45) Inner brow raiser (AU1) Nodding 

 Lip tightener (AU23) Squinting (AU44) Outer brow raiser (AU2) Shaking 

 Pucker (AU23) Widening eyes (AU5) Down-frowning (AU4)  

 Mouth open (AU25/26) Rolling eyes (M68) Asymmetrical  

 Mouth in ‘o’-shape (AU27)    

 Biting lip (AD32)    

 Pout (AU17)    

Manual Gesture Beat Iconic Symbolic  

 Deictic Metaphoric   

Touch  Face Touching face    

 Chin rest    

Language Dialog Acts Connectives Descriptives 

 Instruct Acknowledgment  Alright Relative direction 

 Explain Reply-Y No Compass direction 

 Check Reply-N Ok Color 

 Align Reply-W Um Digit 

 Query-YN Clarify Well Spatial prepositions 

 Query-W Ready   

Louwerse, M. M., Dale, R., Bard, E. G., & Jeuniaux, P. (2012).  Cognitive Science.

touch face

explain

gesture

nod

laugh

. 

. 

.

4Hz

touch face

explain

gesture

nod

laugh

. 

. 

.

4Hz



%

Lag 
t = 0

0 20 40 60 80 100

0
.0

0
.1

0
.2

0
.3

0
.4

Index

x
$
d
e
n
s
it

%REC profile

laugh

laugh

%

Lag 
t = 0

One person leading?

0 20 40 60 80 100

0
.0

0
.1

0
.2

0
.3

0
.4

Index

x
$
d
e
n
s
it

%REC profile

laugh

laugh

Louwerse et al., 2012, Cognitive Science

Smiling Laughing

Louwerse et al., 2012, Cognitive Science



Nodding
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Stroking face
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Intra-personal structure (giver / giver)
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Synchronization in Multimodal Communication !"#

 

Table 2. Cross-Recurrence between Interlocutors for all actions with significant synchrony 

Channels 
Observed excursion from 

base line (|Sec|) 

Cross-recurrence vs 

baseline (!1 = 1) 
Order Dialog 

Number 

Ink 

Blots 
Modality  Action Start - End Peak lag !2 F IG-IF IF-IG 

Face and head Eye squint 0 - 1.75 1.00 4576 7.54** ! !   

Eyebrow down 0 - 2.75 1.25 5344 3.85*   ! ! ++ ++ 

Laughing 0 - 4.75 0 13792 122.61** ! !  ++ 

Smile 0 - 7.75 0. 23008 1333.88** ! !  ++ 

Nodding head 0 - 3.75 0.75 9952 62.21** ! ! ++ ++ 

Shaking head 0 - 3.00 1.00  9952 37.82** ! ! ++ ++ 

Gesture Deictic concrete 10.00 – 37.50 25.00  83680 107.99** ! ! ++ ++ 

Touch face Chinrest 12.50 - 50 27.50  172000 11.42** !  ++  

Stroking 0 - 40.00 18.75  114400 181.25** ! ! ++ -- 

Dialogue acts Acknowledgment 0.25 - 1.75 0.75  3808 33.73** !  ++  

Clarify 2.250 - 8.00 6.75 17632 12.54** !   ++ 

Explain 2.75 - 27.75 15.00  49888 111.75** ! ! ++ ++ 

Query-YN 10.50 – 22.75 16.25  37600 35.19** ! ! ++ ++ 

Reply-N 0 - 1.75 1.00  4576 60.18** ! !   

Connectives Alright 0.75 - 4.75 1.50 6112 3.86*   !  ++ -- 

No 0 - 2.50 0.75  7648 56.25** ! ! ++ ++ 

Descriptives Compass direction 1.00 - 16.75 8.75  45280 59.25** ! ! --  

Color 1.75 - 17.00 9.75  32992 366.30** ! ! -- -- 

Digit 2.750 - 27.75 17.50  68320 226.25** ! ! ++ ++ 

Note. Pluses and minuses mark positive and negative regressions. ++ p < .01, + p < .05, -- p < .01, - p < .05.
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Exercise 5

• Open exercise, if there’s time... 
• Linguistic translation tools allow you to 

rapidly create your own linguistic time 
series for RQA/CRQA...

Outline: Part 2

• Theoretical preamble 
– Coupled conversation partners... 

• The cross recurrence plot and 
quantification (CRQA) 

• Results obtained using these analyses



http://www.recurrence-plot.tk


