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To assess the effect of these issues on data quality, we conducted  
supporting analyses (Supplementary Note). First, we compared auto-
matically extracted coordinates with a reference set of manually entered 
foci in the Surface Management System Database (SumsDB)7,9, and 
found high rates of sensitivity (84%) and specificity (97%). Second, 
we quantified the proportion of activation increases versus decreases 
reported in the neuroimaging literature. We found that decreases 
constituted a small proportion of results and had minimal effect on 
our results. Third, we developed a preliminary algorithm (based on  
ref. 10) to automatically detect and correct for between-study differences 
in stereotactic space (Supplementary Fig. 1). Although automated 
extraction missed a minority of valid coordinates, and work remains 
to be done to increase the specificity of the extracted information, most 
coordinates were extracted accurately and several factors of a priori 
concern had relatively small influences on the results.

Large-scale automated meta-analysis
We used the database of automatically extracted activation coordi-
nates to conduct a comprehensive set of automated meta-analyses 

for several hundred terms of interest. For each term, we identified 
all studies that used the term at high frequency anywhere in the 
article text11 and submitted all associated activation foci to a meta-
analysis. This approach generated whole-brain maps that showed 
the strength of association between each term and every location 
in the brain, enabling us to make multiple kinds of quantitative 
inference (for example, if the term ‘language’ had been used in a 
study, how likely was the study to report activation in Broca’s area? 
If activation had been observed in the amygdala, what was the 
probability that the study frequently used the term ‘fear’?).

To validate this automated approach, which rests on the 
assumption that simple word counts are a reasonable proxy 
for the substantive content of articles, we conducted several 
 supporting analyses (Supplementary Note). First, we found 
that NeuroSynth accurately recaptured conventional boundaries 
between distinct anatomical regions by comparing lexically 
defined regions of interest to anatomically defined regions of 
interest (Supplementary Fig. 2). Second, we used NeuroSynth 
to replicate previous findings of visual category-specific activation 
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Figure 1 | Schematic overview of NeuroSynth framework and applications. 
(a) Outline of the NeuroSynth approach. The full text of a large corpus of 
articles is retrieved and terms of scientific interest are stored in a database. 
Articles are retrieved from the database on the basis of a user-entered 
search string (for example, ‘pain’) and peak coordinates from the associated 
articles are extracted from tables. A meta-analysis of the peak coordinates 
is automatically performed, producing a whole-brain map of the posterior 
probability of the term given activation at each voxel (P(pain|activation)). 
(b) Outlines of forward and reverse inference in brain imaging. Given a 
known psychological manipulation, one can quantify the corresponding 
changes in brain activity and generate a forward inference, but given an 
observed pattern of activity, drawing a reverse inference about associated 
cognitive states is more difficult because multiple cognitive states could 
have similar neural signatures. (c) Given meta-analytic posterior probability 
maps for multiple terms (for example, working memory, emotion and pain), 
one can classify a new activation map by identifying the class with the 
highest probability, P, given the new data (in this example, pain).

Figure 2 | Comparison of previous meta-analysis 
results with forward and reverse inference 
maps produced automatically using the 
NeuroSynth framework. (a) Meta-analytic maps 
produced manually in previous studies14–16. 
(b) Automatically generated forward inference 
maps showing the probability of activation 
given the presence of the term (P(act.|term)). 
(c) Automatically generated reverse inference 
maps showing the probability of the term given 
observed activation (P(term|act.)). Meta-
analyses were carried out for working memory 
(top), emotion (middle) and physical pain 
(bottom) and mapped to the PALS-B12 atlas30. 
Regions in b were consistently associated with 
the term and regions in c were selectively 
associated with the term. To account for 
base differences in term frequencies, reverse 
inference maps assumed uniform priors (equal 
50% probabilities of ‘term’ and ‘no term’). 
Activation in orange or red regions implies 
a high probability that a term is present, 
and activation in blue regions implies a high 
probability that a term is not present. Values 
for all images are shown only for regions that survived a test of association between term and activation, with a whole-brain correction for multiple 
comparisons (false discovery rate was 0.05). DLPFC, dorsolateral prefrontal cortex; DACC, dorsal anterior cingulate cortex; AI, anterior insula.
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The rapid growth of the literature on neuroimaging in humans 
has led to major advances in our understanding of human brain 
function but has also made it increasingly difficult to aggregate 
and synthesize neuroimaging findings. Here we describe and 
validate an automated brain-mapping framework that uses 
text-mining, meta-analysis and machine-learning techniques 
to generate a large database of mappings between neural and 
cognitive states. We show that our approach can be used to 
automatically conduct large-scale, high-quality neuroimaging 
meta-analyses, address long-standing inferential problems in 
the neuroimaging literature and support accurate ‘decoding’ of 
broad cognitive states from brain activity in both entire studies 
and individual human subjects. Collectively, our results have 
validated a powerful and generative framework for synthesizing 
human neuroimaging data on an unprecedented scale.

The development of noninvasive neuroimaging techniques such 
as functional magnetic resonance imaging (fMRI) has spurred 
rapid growth of literature on human brain imaging in recent years. 
In 2010 alone, more than 1,000 fMRI articles had been published1. 
This proliferation has led to substantial advances in our under-
standing of the human brain and cognitive function; however, it 
has also introduced important challenges. In place of too little 
data, researchers are now besieged with too much. Because indi-
vidual neuroimaging studies are often underpowered and have 
relatively high false positive rates2–4, multiple studies are required 
to achieve consensus regarding even broad relationships between 
brain and cognitive function. It is therefore necessary to develop 
new techniques for the large-scale aggregation and synthesis of 
human neuroimaging data4–6.

Here we describe and validate a new framework for brain 
mapping, NeuroSynth, that takes an instrumental step toward 
automated large-scale synthesis of the neuroimaging literature. 
NeuroSynth combines text-mining, meta-analysis and machine-
learning techniques to generate probabilistic mappings between 
cognitive and neural states that can be used for a broad range 
of neuroimaging applications. Whereas previous approaches 
have relied heavily on researchers’ manual efforts (for example,  
refs. 7,8), which limits the scope and efficiency of resulting 
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 analyses1, our framework is fully automated and allows rapid and 
scalable synthesis of the neuroimaging literature. We show that 
this framework can be used to generate large-scale meta-analyses 
for hundreds of broad psychological concepts; support quantita-
tive inferences about the consistency and specificity with which 
different cognitive processes elicit regional changes in brain activ-
ity; and decode and classify broad cognitive states in new data 
solely on the basis of observed brain activity.

RESULTS
Overview
Our methodological approach includes several steps (Fig. 1a). 
First, we used text-mining techniques to identify neuroimaging 
studies that used specific terms of interest (for example, ‘pain’, 
‘emotion’, ‘working memory’ and so on) at a high frequency (>1 in 
1,000 words) in the article text. Second, we automatically extracted 
activation coordinates from all tables reported in these studies. 
This approach produced a large database of term-to-coordinate 
mappings; here we report results based on 100,953 activation foci 
drawn from 3,489 neuroimaging studies published in 17 journals 
(Online Methods). Third, we conducted automated meta-analyses 
of hundreds of psychological concepts, producing an extensive set 
of whole-brain images that quantified relationships between brain 
activity and cognition (Fig. 1b). Finally, we used a machine-learning 
technique (naive Bayes classification) to estimate the likelihood that 
new activation maps were associated with specific psychological 
terms, which allowed relatively open-ended decoding of psychologi-
cal constructs from patterns of brain activity (Fig. 1c).

Automated coordinate extraction
Our approach differs from previous work in its heavy reliance 
on automatically extracted information, raising several poten-
tial concerns about data quality. For example, the software might 
incorrectly classify noncoordinate information in a table as an 
activation focus (a false positive); different articles report foci 
in different stereotactic spaces, resulting in potential discrepan-
cies between anatomical locations represented by the same set of 
coordinates; and the software did not discriminate activations 
from deactivations.
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Method
• Looked for neuroimaging papers that contained a list of 

words of interest (e.g., pain, memory, etc.). 

• Word had to occur at a frequency of 1 per 1,000 
words (.001%). 

• They wrote a “content identifier” technique (discussed 
in last class) to scrape out the brain activation data 
from tables in those papers. 

• They (basically) correlate the words with what areas of 
the brain tend to be activated.

http://neurosynth.org/

Example Paper
• Here is what they are “scraping” using their content 

identifier (see big-data strategies from last class).

Learning to Sample: Eye Tracking and fMRI Indices
of Changes in Object Perception

Lauren L. Emberson1 and Dima Amso2

Abstract

■ We used an fMRI/eye-tracking approach to examine the mech-
anisms involved in learning to segment a novel, occluded object
in a scene. Previous research has suggested a role for effective
visual sampling and prior experience in the development of ma-
ture object perception. However, it remains unclear how the
naive system integrates across variable sampled experiences to
induce perceptual change. We generated a Target Scene in which
a novel occluded Target Object could be perceived as either
“disconnected” or “complete.”We presented one group of partic-
ipants with this scene in alternating sequence with variable visual
experience: three Paired Scenes consisting of the same Target
Object in variable rotations and states of occlusion. A second
control group was presented with similar Paired Scenes that did

not incorporate the Target Object. We found that, relative to
the Control condition, participants in the Training condition
were significantly more likely to change their percept from “dis-
connected” to “connected,” as indexed by pretraining and post-
training test performance. In addition, gaze patterns during
Target Scene inspection differed as a function of variable object
exposure. We found increased looking to the Target Object in
the Training compared with the Control condition. This pattern
was not restricted to participants who changed their initial “dis-
connected” object percept. Neuroimaging data suggest an in-
volvement of the hippocampus and BG, as well as visual cortical
and fronto-parietal regions, in using ongoing regular experience
to enable changes in amodal completion. ■

INTRODUCTION

The mechanisms of object perception and recognition
have received considerable scientific attention. Discovery
in this domain holds promise for informing one of the
most important questions in cognitive and brain sciences:
How do we construct and act on an enduring represen-
tation of the external environment? There are a variety
of research avenues and levels of analysis, appropriate
for addressing this question, that span everything from
the size of receptive fields along visual pathways to philo-
sophical discussions about the origins of object concepts.
Here we use a novel amodal completion paradigm to ex-
amine how visual experience supports changes in object
perception. Amodal or perceptual completion is the per-
ception of an occluded object as whole, despite incom-
plete visual input. Research suggests a role for both
effective attentional sampling and regular experience with
objects in the development of amodal completion. How-
ever, the mechanistic nature of the interaction of these
variables is unclear. The current work uses an fMRI/
eye-tracking approach in adults to examine this issue.

Data from both the perceptual development and cog-
nitive neuroscience literatures converge to shed light on
the mechanisms that support amodal completion. Neo-
nates respond to partly occluded object displays only in
terms of what is directly visible. They do not perceptually

complete a center-occluded object (Slater, Johnson,
Brown, & Badenock, 1996; Slater et al., 1990; but see
Valenza, Leo, Gava, & Simion, 2006). By 2 months, infants
are able to perform amodal completion under limited con-
ditions (e.g., where the occluder is narrow). By 4 months,
amodal completion is more robust (Johnson, 2004). Neuro-
imaging investigations that have examined the perception
of occluded objects have found involvement of object
processing regions, such as the lateral occipital complex
(LOC), and portions of the inferior temporal and posterior
parietal cortices (Hedgé, Feng, Murray, & Kersten, 2008;
Shuwairi, Curtis, & Johnson, 2007; Olson, Gatenby, Leung,
Skudlarski, & Gore, 2004; Lerner, Hendler, & Malach, 2002;
Grill-Spector, Kourtzi, & Kanwisher, 2001). Shuwairi et al.
(2007) note that maintaining an active representation of
an occluded object may require a series of mechanisms in-
cluding selective attention (Scholl, 2001; Awh, Jonides, &
Reuter-Lorenz, 1998) and visual workingmemory (Pasternak
& Greenlee, 2005).
A series of developmental behavioral studies have de-

termined a role for developing attention-driven sampling
mechanisms in the emergence of amodal completion
(Bhatt & Quinn, 2011; Amso & Johnson, 2006). We use
sampling here to mean visually orienting to object-relevant
locations in a visual scene. Theoretically, sampling may
serve to support the extraction of object feature correla-
tions in the service of efficient perception and recognition
(Bhatt & Quinn, 2011). For example, Amso and Johnson
(2006) found that 3-month-old infants who indicate unity1University of Rochester, 2Brown University
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Coordinate System

Many of the regions active in the Posttest Group main
effect were subsumed by the Posttest Group by Scene
Type interaction. However, activations in portions of the
parietal lobe were unique to the main effect of Posttest
Group and showed greater activity for the Perceivers rela-
tive to the Nonperceivers (Table 3). These specifically
spanned the bilateral postcentral gyri and the inferior
parietal lobule. Perceivers also had greater activation in
the LOC (∼BA 19), relevant to recognition of object shape
(Grill-Spector et al., 2001), than Nonperceivers.

DISCUSSION

Using an eye-tracking/fMRI methods approach, we exam-
ined how variable experience support changes in object
perception. Exposure to variable views of the Target Object
in the Training condition catalyzed perceptual change;
more participants were able to perceptually complete the
Target Object after exposure in the Training (65%) than the
Control condition (20%). This result establishes that, de-
spite never seeing the Target Object in its entirety, partici-
pants were able to integrate across variable and locally

ambiguous experiences to arrive at a globally “connected”
percept.

We found differences in eye movements to the identical
Target Scene across exposure conditions. This confirms the
prediction that variable experience with an object is rele-
vant for efficient sampling from scenes containing that ob-
ject. Additionally, we found differences in eye movements
between Perceivers and Nonperceivers in the Training con-
dition. As predicted based on the developmental data (Amso
& Johnson, 2006; Johnson et al., 2004), results demonstrate
that Perceivers looked more evenly at both Object Surfaces,
a pattern that may be reflecting object-based attention.
Theeuwes, Mathôt, and Kingstone (2010) found that par-
ticipants prefer to make eye movements within an object
rather than between objects. Matsukura and Vecera (2006)
found that object-based attention was evident when per-
ceptual grouping cues were robust. While attention was
not directly manipulated in this work, we did find that par-
ticipants sample more from the two Object Surfaces in the

Table 2. Main Effect of Scene Type

Side Areas (Paired > Target)

Coordinates

X Y Z

R Cuneus 18 −75 24

R Fusiform gyrus 40 −66 −13

R Inferior parietal lobule 39 −42 26

R Inferior temporal gyrus 51 −61 −10

R Middle occipital gyrus 40 −77 −10

R Middle temporal gyrus 59 −49 −4

R Parahippocampal gyrus 32 −21 −24

R Posterior cingulate 16 −6 11

R Preceuneus 24 −49 31

L Caudate nucleus −23 −34 2

L Declive 0 −57 −11

L Fusiform gyrus −40 −66 −11

L Inferior parietal lobule −41 −54 46

L Middle occipital gyrus −31 −61 2

L Parahippocampal gyrus −24 −42 2

L Posterior cingulate −24 −61 18

L Precuneus 24 −76 35

L Superior parietal lobule −31 −61 57

L Thalamus −21 −27 5

Corrected to p < .05.

Table 3. Main Effect of Posttest Group

Side Areas (Perceivers > Nonperceivers)

Coordinates

X Y Z

R Cingulate gyrus 6 1 42

R Inferior parietal lobule 47 −27 28

R Inferior temporal gyrus 52 −9 −30

R Insula 32 −9 17

R Medial frontal gyrus 12 40 25

R Middle frontal gyrus 35 26 42

R Middle occipital gyrus (LOC) 48 −71 5

R Middle temporal gyrus 51 1 −15

R Postcentral gyrus 56 −15 28

R Precentral gyrus 50 −15 38

R Precuneus 24 −51 48

R Superior frontal gyrus 12 46 44

R Superior temporal gyrus 41 16 −34

L Cingulate gyrus −16 24 29

L Declive −45 −65 16

L Inferior parietal lobule −54 −27 37

L Insula −40 −18 15

L Medial frontal gyrus −15 40 25

L Middle frontal gyrus −27 40 37

L Precentral gyrus −34 16 37

L Postcentral gyrus −54 −15 38

L Superior temporal gyrus −44 16 −24

Corrected to p < .05.

Emberson and Amso 2039

Perceivers Paired>Target, ts(8) > 2.7, ps < .05, no effect for
Nonperceivers) and the right dorsolateral pFC (∼BA 9/46,
Perceivers Paired > Target, t(8) = 2.5, p = .037, no effect
for Nonperceivers; Figure 6).

Temporal lobe regions spanning the left superior,
middle temporal, and inferior temporal gyrus (Figure 6)
exhibited the same pattern as reported above (inferior tem-
poral gyrus, ∼BA 20, Perceivers, Paired > Target, t(8) =

3.32, p = .01, no effect for Nonperceivers). The set of
regions that did not follow this pattern included the right
inferior, middle, and superior temporal gyri. This set of re-
gions only showed a marginally reliable effect for Paired >
Target scenes in Perceivers, t(8) = 1.85, p = .1. However,
they also showed the reverse Target > Paired scene effect
in Nonperceivers, t(9) = 2.36, p = .04.
We asked whether activation of regions in this inter-

action was related to distribution of looking on task. As
discussed, Perceivers and Nonperceivers were largely
differentiated by differences in proportion of looking di-
rected at the Object Surfaces. We conducted simple AOI
(Object 1 × Object 2 × Occluder) × Posttest Group
(Perceiver × Nonperceiver) ANOVAs separately mod-
eling Target and Paired Scene beta weights per ROI as
covariates. The only region that explained any of the var-
iance in the distribution of proportional looking was the
thalamus. Activations in both the Target, F(2, 30) = 12.6,
p < .001, and Paired Scenes, F(2, 30) = 4.89, p = .015,
interacted with the AOI variables. A positive correlation
between thalamic activity in the Target scene and propor-
tion of looking directed at the Occluder was found in
Perceivers, r(9) = 0.81, p = .003, and Nonperceivers,
r(10) = 0.78, p = .003. A positive correlation between
thalamic Paired Scene activity and proportional looking at
Object 2 obtained marginally in Nonperceivers, r(10) =
−0.62, p = .03, and reliably in Perceivers, r(9) = 0.73,
p= .01. We verified that simple fixation count and average
duration of fixation metrics did not interact with this acti-
vation in the same analysis, indicating that this finding is
not being driven by general eye movement differences.
See Table 2 for a list of regions active in the Scene Type

main effect. We highlight here regions relevant to object
recognition. Specifically, we found greater activations for
the Paired relative to the Target scenes in bilateral por-
tions of the LOC (∼BA 19), right inferior temporal and
fusiform gyri (∼BA 37), and bilateral parahippocampal
gyrus. Because of the differences in scene frequency within
each Scene Type, we examined all regions for patterns con-
sistent with repetition suppression (Grill-Spector, Henson,
& Martin, 2006) but found no clear indication of this effect.

Table 1. Interaction of Scene Type × Posttest Group

Side Areas

Coordinates

X Y Z

R Anterior cingulate 12 25 15

R Caudate nucleus 15 14 13

R Cerebellar tonsil 24 −57 −49

R Cingulate gyrus 11 9 28

R Fusiform gyrus 46 −3 −23

R Hippocampus 36 −19 −11

R Inferior temporal gyrus 46 −3 −30

R Middle frontal gyrus 47 −18 −7

R Middle temporal gyrus 47 −11 −9

R Superior frontal gyrus 19 28 49

R Superior temporal gyrus 45 24 32

R Thalamus 5 −16 8

L Anterior cingulate 13 −39 0

L Caudate nucleus −14 14 14

L Inferior frontal gyrus −32 39 2

L Inferior temporal gyrus −50 −8 −22

L Middle temporal gyrus −52 −8 −15

L Superior frontal gyrus −22 14 47

L Superior temporal gyrus −45 −11 −5

Corrected to p < .05.

Figure 6. Depicts activations
generated by the Posttest
Group × Scene Type
interaction (listed in Table 1).
The ROIs presented here
include the right dorsolateral
pFC and bilateral temporal lobe
regions. The colored bar reflects
the value intensity for the
interaction per region.
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these x,y,z coordinates 
where significant brain 
activity was detected in 

an experiment



Veracity?
• Last class we discussed veracity: How do we know 

that Yarkoni et al. extracted the tables correctly? 
What if some papers have their data extracted with 
incorrect locations, or incorrect activations, etc.? 

• Again, coupling big data with other tests of 
reliability (as in the English lexicon/dictionary 
example from Ngram): 

• They checked another database in which some of 
the authors of the studies had entered their data.

Amazing Things

• We can do forward vs. reverse inference about 
how brain area activation relates to cognitive 
function. 

• We can do cognitive state detection by using 
brain areas to classify which cognitive state is 
taking place.

Amazing Things

• We can do forward vs. reverse inference about 
how brain area activation relates to cognitive 
function. 

• We can do cognitive state detection by using 
brain areas to classify which cognitive state is 
taking place.

Forward vs. Reverse
• Forward inference: 

• Calculating the probability that you detect 
activation in a given brain area given that a term 
is mentioned in the paper.  

• For example:  
 P(activation in left frontal | “language” occurs) 

• We can calculate these probabilities because 
NeuroSynth has so much data in it.



Conditional Probability
(cream, sugar) 

(cream) 
(cream, sugar) 

(cream) 
(.)

5 coffees ordered

P(cream) = 4/5 = .8
P(sugar) = 2/5 = .4

P(sugar | cream) = P(sugar, cream) / P(cream)

= (2/5) / .8 = .4 / .8 = .5

Conditional Probability

P(dACC | pain) = P(dACC, pain) / P(pain)
forward

P(pain | dACC) = P(dACC, pain) / P(dACC)
reverse

(dACC, pain) 
(APFC, pain) 

(dACC, language) 
(APFC, pain) 

(APFC, emotion)
…

Forward vs. Reverse
• Reverse inference: 

• Calculating the probability that a term is 
mentioned in the paper given that you see 
activation in a given brain area.  

• For example:  
 P(“language” occurs | left front lobe activation) 

• We can calculate these probabilities because 
NeuroSynth has so much data in it.
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in regions such as the fusiform face area12 and visual word form 
area13 (Supplementary Fig. 3). Third, we found that more con-
servative meta-analyses in which the lexical search space had been 
restricted to article titles yielded similar, but less sensitive, meta-
analysis results (Supplementary Fig. 4).

Finally, we compared our results with those produced by 
previous manual approaches. Comparison of automated meta-
analyses of three broad psychological terms (‘working mem-
ory’, ‘emotion’ and ‘pain’) with previously published meta- or 
mega-analytic maps14–16 revealed marked qualitative (Fig. 2) 
and quantitative convergence (Supplementary Fig. 5) between 
approaches. To directly test the convergence of automated and 
manual approaches when applied to similar data, we manually 
validated 265 automatically extracted pain studies and performed 
a standard multilevel kernel density analysis15 to compare experi-
mental pain stimulation with baseline (66 valid studies). There 
was a notable overlap between automated and manual results 
(correlation across voxels, 0.84; Supplementary Fig. 6). These 
results showed that, at least for broad domains, an automated 
meta-analysis approach generated results that were comparable 
in sensitivity and scope to those produced with more effort in 
previous studies.

Quantitative reverse inference
The relatively comprehensive nature of the NeuroSynth database 
enabled us to address a long-standing inferential problem in the 
neuroimaging literature, namely how to quantitatively identify 
cognitive states from patterns of observed brain activity. This 
problem of ‘reverse inference’17 arises because most neuroimaging 
studies are designed to identify neural changes that result from 
known psychological manipulations and not to determine what 
cognitive state(s) a given pattern of activity implies17 (Fig. 1b). 
For instance, fear consistently activates the human amygdala, but 
this does not imply that people in whom the amygdala is activated 
must be experiencing fear because other affective and nonaffec-
tive states have also been reported to activate the amygdala4,18. 
True reverse inference requires knowledge of which brain regions 
and networks are selectively, and not just consistently, associated 
with particular cognitive states15,17.

Because the NeuroSynth database contains a broad set of term-
to-activation mappings, our framework is well suited for drawing 
quantitative inferences about mind-brain relationships in both 
the forward and reverse directions. We could quantify both the 
probability that there would be activation in specific brain regions 
given the presence of a particular term (P(activation|term) or ‘for-
ward inference’), and the probability that a term would occur in an 

article given the presence of activation in a particular brain region 
(P(term|activation) or reverse inference). Comparison of these two 
analyses allowed us to assess the validity of many common infer-
ences about the relationship between neural and cognitive states.

For illustration, we focused on the sample domains of working 
memory, emotion and pain, which are of substantial basic and 
clinical interest and have been extensively studied using fMRI (for 
additional examples, see Supplementary Fig. 7). These domains 
are excellent candidates for quantitative reverse inference, as they 
are thought to have confusable neural correlates, with common 
activation of regions such as the dorsal anterior cingulate cortex 
(DACC)19 and anterior insula.

Our results showed differences between the forward and reverse 
inference maps in all three domains (Fig. 2). For working memory, 
the forward inference map revealed the most consistent associa-
tions in the dorsolateral prefrontal cortex, anterior insula and 
dorsal medial frontal cortex, replicating previous findings15,20. 
However, the reverse inference map instead implicated the anterior 
prefrontal cortex and posterior parietal cortex as the regions that 
were most selectively activated by working memory tasks.

We observed a similar pattern for pain and emotion. In both 
domains, frontal regions that have been broadly implicated in 
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Figure 3 | Comparison of forward and reverse inference in regions of 
interest. (a) Labeled regions of interest shown on lateral and medial 
brain surfaces. (b) Comparison of forward inference (probability of 
activation given term P(act.|term)) and reverse inference (probability of 
term given activation P(term|act.)) for the domains of working memory, 
emotion and pain as marked. * denotes results at a false discovery rate 
threshold of 0.05; (whole-brain false discovery rate, (q) = 0.05). DACC, 
dorsal anterior cingulate cortex (stereotactic coordinates in Montreal 
Neurological Institute space: +2, +8, +50); AI, anterior insula (+36, +16, 
+2); IFJ, inferior frontal junction (−50, +8, +36); PI, posterior insula 
(+42, −24, +24); APFC, anterior prefrontal cortex (−28, +56, +8); VMPFC, 
ventromedial prefrontal cortex (0, +32, −4). Dashed lines indicate even 
odds of a term being used (P(term|act.) = 0.5).
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in regions such as the fusiform face area12 and visual word form 
area13 (Supplementary Fig. 3). Third, we found that more con-
servative meta-analyses in which the lexical search space had been 
restricted to article titles yielded similar, but less sensitive, meta-
analysis results (Supplementary Fig. 4).

Finally, we compared our results with those produced by 
previous manual approaches. Comparison of automated meta-
analyses of three broad psychological terms (‘working mem-
ory’, ‘emotion’ and ‘pain’) with previously published meta- or 
mega-analytic maps14–16 revealed marked qualitative (Fig. 2) 
and quantitative convergence (Supplementary Fig. 5) between 
approaches. To directly test the convergence of automated and 
manual approaches when applied to similar data, we manually 
validated 265 automatically extracted pain studies and performed 
a standard multilevel kernel density analysis15 to compare experi-
mental pain stimulation with baseline (66 valid studies). There 
was a notable overlap between automated and manual results 
(correlation across voxels, 0.84; Supplementary Fig. 6). These 
results showed that, at least for broad domains, an automated 
meta-analysis approach generated results that were comparable 
in sensitivity and scope to those produced with more effort in 
previous studies.

Quantitative reverse inference
The relatively comprehensive nature of the NeuroSynth database 
enabled us to address a long-standing inferential problem in the 
neuroimaging literature, namely how to quantitatively identify 
cognitive states from patterns of observed brain activity. This 
problem of ‘reverse inference’17 arises because most neuroimaging 
studies are designed to identify neural changes that result from 
known psychological manipulations and not to determine what 
cognitive state(s) a given pattern of activity implies17 (Fig. 1b). 
For instance, fear consistently activates the human amygdala, but 
this does not imply that people in whom the amygdala is activated 
must be experiencing fear because other affective and nonaffec-
tive states have also been reported to activate the amygdala4,18. 
True reverse inference requires knowledge of which brain regions 
and networks are selectively, and not just consistently, associated 
with particular cognitive states15,17.

Because the NeuroSynth database contains a broad set of term-
to-activation mappings, our framework is well suited for drawing 
quantitative inferences about mind-brain relationships in both 
the forward and reverse directions. We could quantify both the 
probability that there would be activation in specific brain regions 
given the presence of a particular term (P(activation|term) or ‘for-
ward inference’), and the probability that a term would occur in an 

article given the presence of activation in a particular brain region 
(P(term|activation) or reverse inference). Comparison of these two 
analyses allowed us to assess the validity of many common infer-
ences about the relationship between neural and cognitive states.

For illustration, we focused on the sample domains of working 
memory, emotion and pain, which are of substantial basic and 
clinical interest and have been extensively studied using fMRI (for 
additional examples, see Supplementary Fig. 7). These domains 
are excellent candidates for quantitative reverse inference, as they 
are thought to have confusable neural correlates, with common 
activation of regions such as the dorsal anterior cingulate cortex 
(DACC)19 and anterior insula.

Our results showed differences between the forward and reverse 
inference maps in all three domains (Fig. 2). For working memory, 
the forward inference map revealed the most consistent associa-
tions in the dorsolateral prefrontal cortex, anterior insula and 
dorsal medial frontal cortex, replicating previous findings15,20. 
However, the reverse inference map instead implicated the anterior 
prefrontal cortex and posterior parietal cortex as the regions that 
were most selectively activated by working memory tasks.

We observed a similar pattern for pain and emotion. In both 
domains, frontal regions that have been broadly implicated in 
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Figure 3 | Comparison of forward and reverse inference in regions of 
interest. (a) Labeled regions of interest shown on lateral and medial 
brain surfaces. (b) Comparison of forward inference (probability of 
activation given term P(act.|term)) and reverse inference (probability of 
term given activation P(term|act.)) for the domains of working memory, 
emotion and pain as marked. * denotes results at a false discovery rate 
threshold of 0.05; (whole-brain false discovery rate, (q) = 0.05). DACC, 
dorsal anterior cingulate cortex (stereotactic coordinates in Montreal 
Neurological Institute space: +2, +8, +50); AI, anterior insula (+36, +16, 
+2); IFJ, inferior frontal junction (−50, +8, +36); PI, posterior insula 
(+42, −24, +24); APFC, anterior prefrontal cortex (−28, +56, +8); VMPFC, 
ventromedial prefrontal cortex (0, +32, −4). Dashed lines indicate even 
odds of a term being used (P(term|act.) = 0.5).
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in regions such as the fusiform face area12 and visual word form 
area13 (Supplementary Fig. 3). Third, we found that more con-
servative meta-analyses in which the lexical search space had been 
restricted to article titles yielded similar, but less sensitive, meta-
analysis results (Supplementary Fig. 4).

Finally, we compared our results with those produced by 
previous manual approaches. Comparison of automated meta-
analyses of three broad psychological terms (‘working mem-
ory’, ‘emotion’ and ‘pain’) with previously published meta- or 
mega-analytic maps14–16 revealed marked qualitative (Fig. 2) 
and quantitative convergence (Supplementary Fig. 5) between 
approaches. To directly test the convergence of automated and 
manual approaches when applied to similar data, we manually 
validated 265 automatically extracted pain studies and performed 
a standard multilevel kernel density analysis15 to compare experi-
mental pain stimulation with baseline (66 valid studies). There 
was a notable overlap between automated and manual results 
(correlation across voxels, 0.84; Supplementary Fig. 6). These 
results showed that, at least for broad domains, an automated 
meta-analysis approach generated results that were comparable 
in sensitivity and scope to those produced with more effort in 
previous studies.

Quantitative reverse inference
The relatively comprehensive nature of the NeuroSynth database 
enabled us to address a long-standing inferential problem in the 
neuroimaging literature, namely how to quantitatively identify 
cognitive states from patterns of observed brain activity. This 
problem of ‘reverse inference’17 arises because most neuroimaging 
studies are designed to identify neural changes that result from 
known psychological manipulations and not to determine what 
cognitive state(s) a given pattern of activity implies17 (Fig. 1b). 
For instance, fear consistently activates the human amygdala, but 
this does not imply that people in whom the amygdala is activated 
must be experiencing fear because other affective and nonaffec-
tive states have also been reported to activate the amygdala4,18. 
True reverse inference requires knowledge of which brain regions 
and networks are selectively, and not just consistently, associated 
with particular cognitive states15,17.

Because the NeuroSynth database contains a broad set of term-
to-activation mappings, our framework is well suited for drawing 
quantitative inferences about mind-brain relationships in both 
the forward and reverse directions. We could quantify both the 
probability that there would be activation in specific brain regions 
given the presence of a particular term (P(activation|term) or ‘for-
ward inference’), and the probability that a term would occur in an 

article given the presence of activation in a particular brain region 
(P(term|activation) or reverse inference). Comparison of these two 
analyses allowed us to assess the validity of many common infer-
ences about the relationship between neural and cognitive states.

For illustration, we focused on the sample domains of working 
memory, emotion and pain, which are of substantial basic and 
clinical interest and have been extensively studied using fMRI (for 
additional examples, see Supplementary Fig. 7). These domains 
are excellent candidates for quantitative reverse inference, as they 
are thought to have confusable neural correlates, with common 
activation of regions such as the dorsal anterior cingulate cortex 
(DACC)19 and anterior insula.

Our results showed differences between the forward and reverse 
inference maps in all three domains (Fig. 2). For working memory, 
the forward inference map revealed the most consistent associa-
tions in the dorsolateral prefrontal cortex, anterior insula and 
dorsal medial frontal cortex, replicating previous findings15,20. 
However, the reverse inference map instead implicated the anterior 
prefrontal cortex and posterior parietal cortex as the regions that 
were most selectively activated by working memory tasks.

We observed a similar pattern for pain and emotion. In both 
domains, frontal regions that have been broadly implicated in 
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Figure 3 | Comparison of forward and reverse inference in regions of 
interest. (a) Labeled regions of interest shown on lateral and medial 
brain surfaces. (b) Comparison of forward inference (probability of 
activation given term P(act.|term)) and reverse inference (probability of 
term given activation P(term|act.)) for the domains of working memory, 
emotion and pain as marked. * denotes results at a false discovery rate 
threshold of 0.05; (whole-brain false discovery rate, (q) = 0.05). DACC, 
dorsal anterior cingulate cortex (stereotactic coordinates in Montreal 
Neurological Institute space: +2, +8, +50); AI, anterior insula (+36, +16, 
+2); IFJ, inferior frontal junction (−50, +8, +36); PI, posterior insula 
(+42, −24, +24); APFC, anterior prefrontal cortex (−28, +56, +8); VMPFC, 
ventromedial prefrontal cortex (0, +32, −4). Dashed lines indicate even 
odds of a term being used (P(term|act.) = 0.5).
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in regions such as the fusiform face area12 and visual word form 
area13 (Supplementary Fig. 3). Third, we found that more con-
servative meta-analyses in which the lexical search space had been 
restricted to article titles yielded similar, but less sensitive, meta-
analysis results (Supplementary Fig. 4).

Finally, we compared our results with those produced by 
previous manual approaches. Comparison of automated meta-
analyses of three broad psychological terms (‘working mem-
ory’, ‘emotion’ and ‘pain’) with previously published meta- or 
mega-analytic maps14–16 revealed marked qualitative (Fig. 2) 
and quantitative convergence (Supplementary Fig. 5) between 
approaches. To directly test the convergence of automated and 
manual approaches when applied to similar data, we manually 
validated 265 automatically extracted pain studies and performed 
a standard multilevel kernel density analysis15 to compare experi-
mental pain stimulation with baseline (66 valid studies). There 
was a notable overlap between automated and manual results 
(correlation across voxels, 0.84; Supplementary Fig. 6). These 
results showed that, at least for broad domains, an automated 
meta-analysis approach generated results that were comparable 
in sensitivity and scope to those produced with more effort in 
previous studies.

Quantitative reverse inference
The relatively comprehensive nature of the NeuroSynth database 
enabled us to address a long-standing inferential problem in the 
neuroimaging literature, namely how to quantitatively identify 
cognitive states from patterns of observed brain activity. This 
problem of ‘reverse inference’17 arises because most neuroimaging 
studies are designed to identify neural changes that result from 
known psychological manipulations and not to determine what 
cognitive state(s) a given pattern of activity implies17 (Fig. 1b). 
For instance, fear consistently activates the human amygdala, but 
this does not imply that people in whom the amygdala is activated 
must be experiencing fear because other affective and nonaffec-
tive states have also been reported to activate the amygdala4,18. 
True reverse inference requires knowledge of which brain regions 
and networks are selectively, and not just consistently, associated 
with particular cognitive states15,17.

Because the NeuroSynth database contains a broad set of term-
to-activation mappings, our framework is well suited for drawing 
quantitative inferences about mind-brain relationships in both 
the forward and reverse directions. We could quantify both the 
probability that there would be activation in specific brain regions 
given the presence of a particular term (P(activation|term) or ‘for-
ward inference’), and the probability that a term would occur in an 

article given the presence of activation in a particular brain region 
(P(term|activation) or reverse inference). Comparison of these two 
analyses allowed us to assess the validity of many common infer-
ences about the relationship between neural and cognitive states.

For illustration, we focused on the sample domains of working 
memory, emotion and pain, which are of substantial basic and 
clinical interest and have been extensively studied using fMRI (for 
additional examples, see Supplementary Fig. 7). These domains 
are excellent candidates for quantitative reverse inference, as they 
are thought to have confusable neural correlates, with common 
activation of regions such as the dorsal anterior cingulate cortex 
(DACC)19 and anterior insula.

Our results showed differences between the forward and reverse 
inference maps in all three domains (Fig. 2). For working memory, 
the forward inference map revealed the most consistent associa-
tions in the dorsolateral prefrontal cortex, anterior insula and 
dorsal medial frontal cortex, replicating previous findings15,20. 
However, the reverse inference map instead implicated the anterior 
prefrontal cortex and posterior parietal cortex as the regions that 
were most selectively activated by working memory tasks.

We observed a similar pattern for pain and emotion. In both 
domains, frontal regions that have been broadly implicated in 
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Figure 3 | Comparison of forward and reverse inference in regions of 
interest. (a) Labeled regions of interest shown on lateral and medial 
brain surfaces. (b) Comparison of forward inference (probability of 
activation given term P(act.|term)) and reverse inference (probability of 
term given activation P(term|act.)) for the domains of working memory, 
emotion and pain as marked. * denotes results at a false discovery rate 
threshold of 0.05; (whole-brain false discovery rate, (q) = 0.05). DACC, 
dorsal anterior cingulate cortex (stereotactic coordinates in Montreal 
Neurological Institute space: +2, +8, +50); AI, anterior insula (+36, +16, 
+2); IFJ, inferior frontal junction (−50, +8, +36); PI, posterior insula 
(+42, −24, +24); APFC, anterior prefrontal cortex (−28, +56, +8); VMPFC, 
ventromedial prefrontal cortex (0, +32, −4). Dashed lines indicate even 
odds of a term being used (P(term|act.) = 0.5).

NATURE METHODS | VOL.8 NO.8 | AUGUST 2011 | 667

ARTICLES

in regions such as the fusiform face area12 and visual word form 
area13 (Supplementary Fig. 3). Third, we found that more con-
servative meta-analyses in which the lexical search space had been 
restricted to article titles yielded similar, but less sensitive, meta-
analysis results (Supplementary Fig. 4).

Finally, we compared our results with those produced by 
previous manual approaches. Comparison of automated meta-
analyses of three broad psychological terms (‘working mem-
ory’, ‘emotion’ and ‘pain’) with previously published meta- or 
mega-analytic maps14–16 revealed marked qualitative (Fig. 2) 
and quantitative convergence (Supplementary Fig. 5) between 
approaches. To directly test the convergence of automated and 
manual approaches when applied to similar data, we manually 
validated 265 automatically extracted pain studies and performed 
a standard multilevel kernel density analysis15 to compare experi-
mental pain stimulation with baseline (66 valid studies). There 
was a notable overlap between automated and manual results 
(correlation across voxels, 0.84; Supplementary Fig. 6). These 
results showed that, at least for broad domains, an automated 
meta-analysis approach generated results that were comparable 
in sensitivity and scope to those produced with more effort in 
previous studies.

Quantitative reverse inference
The relatively comprehensive nature of the NeuroSynth database 
enabled us to address a long-standing inferential problem in the 
neuroimaging literature, namely how to quantitatively identify 
cognitive states from patterns of observed brain activity. This 
problem of ‘reverse inference’17 arises because most neuroimaging 
studies are designed to identify neural changes that result from 
known psychological manipulations and not to determine what 
cognitive state(s) a given pattern of activity implies17 (Fig. 1b). 
For instance, fear consistently activates the human amygdala, but 
this does not imply that people in whom the amygdala is activated 
must be experiencing fear because other affective and nonaffec-
tive states have also been reported to activate the amygdala4,18. 
True reverse inference requires knowledge of which brain regions 
and networks are selectively, and not just consistently, associated 
with particular cognitive states15,17.

Because the NeuroSynth database contains a broad set of term-
to-activation mappings, our framework is well suited for drawing 
quantitative inferences about mind-brain relationships in both 
the forward and reverse directions. We could quantify both the 
probability that there would be activation in specific brain regions 
given the presence of a particular term (P(activation|term) or ‘for-
ward inference’), and the probability that a term would occur in an 

article given the presence of activation in a particular brain region 
(P(term|activation) or reverse inference). Comparison of these two 
analyses allowed us to assess the validity of many common infer-
ences about the relationship between neural and cognitive states.

For illustration, we focused on the sample domains of working 
memory, emotion and pain, which are of substantial basic and 
clinical interest and have been extensively studied using fMRI (for 
additional examples, see Supplementary Fig. 7). These domains 
are excellent candidates for quantitative reverse inference, as they 
are thought to have confusable neural correlates, with common 
activation of regions such as the dorsal anterior cingulate cortex 
(DACC)19 and anterior insula.

Our results showed differences between the forward and reverse 
inference maps in all three domains (Fig. 2). For working memory, 
the forward inference map revealed the most consistent associa-
tions in the dorsolateral prefrontal cortex, anterior insula and 
dorsal medial frontal cortex, replicating previous findings15,20. 
However, the reverse inference map instead implicated the anterior 
prefrontal cortex and posterior parietal cortex as the regions that 
were most selectively activated by working memory tasks.

We observed a similar pattern for pain and emotion. In both 
domains, frontal regions that have been broadly implicated in 
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Figure 3 | Comparison of forward and reverse inference in regions of 
interest. (a) Labeled regions of interest shown on lateral and medial 
brain surfaces. (b) Comparison of forward inference (probability of 
activation given term P(act.|term)) and reverse inference (probability of 
term given activation P(term|act.)) for the domains of working memory, 
emotion and pain as marked. * denotes results at a false discovery rate 
threshold of 0.05; (whole-brain false discovery rate, (q) = 0.05). DACC, 
dorsal anterior cingulate cortex (stereotactic coordinates in Montreal 
Neurological Institute space: +2, +8, +50); AI, anterior insula (+36, +16, 
+2); IFJ, inferior frontal junction (−50, +8, +36); PI, posterior insula 
(+42, −24, +24); APFC, anterior prefrontal cortex (−28, +56, +8); VMPFC, 
ventromedial prefrontal cortex (0, +32, −4). Dashed lines indicate even 
odds of a term being used (P(term|act.) = 0.5).
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in regions such as the fusiform face area12 and visual word form 
area13 (Supplementary Fig. 3). Third, we found that more con-
servative meta-analyses in which the lexical search space had been 
restricted to article titles yielded similar, but less sensitive, meta-
analysis results (Supplementary Fig. 4).

Finally, we compared our results with those produced by 
previous manual approaches. Comparison of automated meta-
analyses of three broad psychological terms (‘working mem-
ory’, ‘emotion’ and ‘pain’) with previously published meta- or 
mega-analytic maps14–16 revealed marked qualitative (Fig. 2) 
and quantitative convergence (Supplementary Fig. 5) between 
approaches. To directly test the convergence of automated and 
manual approaches when applied to similar data, we manually 
validated 265 automatically extracted pain studies and performed 
a standard multilevel kernel density analysis15 to compare experi-
mental pain stimulation with baseline (66 valid studies). There 
was a notable overlap between automated and manual results 
(correlation across voxels, 0.84; Supplementary Fig. 6). These 
results showed that, at least for broad domains, an automated 
meta-analysis approach generated results that were comparable 
in sensitivity and scope to those produced with more effort in 
previous studies.

Quantitative reverse inference
The relatively comprehensive nature of the NeuroSynth database 
enabled us to address a long-standing inferential problem in the 
neuroimaging literature, namely how to quantitatively identify 
cognitive states from patterns of observed brain activity. This 
problem of ‘reverse inference’17 arises because most neuroimaging 
studies are designed to identify neural changes that result from 
known psychological manipulations and not to determine what 
cognitive state(s) a given pattern of activity implies17 (Fig. 1b). 
For instance, fear consistently activates the human amygdala, but 
this does not imply that people in whom the amygdala is activated 
must be experiencing fear because other affective and nonaffec-
tive states have also been reported to activate the amygdala4,18. 
True reverse inference requires knowledge of which brain regions 
and networks are selectively, and not just consistently, associated 
with particular cognitive states15,17.

Because the NeuroSynth database contains a broad set of term-
to-activation mappings, our framework is well suited for drawing 
quantitative inferences about mind-brain relationships in both 
the forward and reverse directions. We could quantify both the 
probability that there would be activation in specific brain regions 
given the presence of a particular term (P(activation|term) or ‘for-
ward inference’), and the probability that a term would occur in an 

article given the presence of activation in a particular brain region 
(P(term|activation) or reverse inference). Comparison of these two 
analyses allowed us to assess the validity of many common infer-
ences about the relationship between neural and cognitive states.

For illustration, we focused on the sample domains of working 
memory, emotion and pain, which are of substantial basic and 
clinical interest and have been extensively studied using fMRI (for 
additional examples, see Supplementary Fig. 7). These domains 
are excellent candidates for quantitative reverse inference, as they 
are thought to have confusable neural correlates, with common 
activation of regions such as the dorsal anterior cingulate cortex 
(DACC)19 and anterior insula.

Our results showed differences between the forward and reverse 
inference maps in all three domains (Fig. 2). For working memory, 
the forward inference map revealed the most consistent associa-
tions in the dorsolateral prefrontal cortex, anterior insula and 
dorsal medial frontal cortex, replicating previous findings15,20. 
However, the reverse inference map instead implicated the anterior 
prefrontal cortex and posterior parietal cortex as the regions that 
were most selectively activated by working memory tasks.

We observed a similar pattern for pain and emotion. In both 
domains, frontal regions that have been broadly implicated in 
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Figure 3 | Comparison of forward and reverse inference in regions of 
interest. (a) Labeled regions of interest shown on lateral and medial 
brain surfaces. (b) Comparison of forward inference (probability of 
activation given term P(act.|term)) and reverse inference (probability of 
term given activation P(term|act.)) for the domains of working memory, 
emotion and pain as marked. * denotes results at a false discovery rate 
threshold of 0.05; (whole-brain false discovery rate, (q) = 0.05). DACC, 
dorsal anterior cingulate cortex (stereotactic coordinates in Montreal 
Neurological Institute space: +2, +8, +50); AI, anterior insula (+36, +16, 
+2); IFJ, inferior frontal junction (−50, +8, +36); PI, posterior insula 
(+42, −24, +24); APFC, anterior prefrontal cortex (−28, +56, +8); VMPFC, 
ventromedial prefrontal cortex (0, +32, −4). Dashed lines indicate even 
odds of a term being used (P(term|act.) = 0.5).

Paradox
• Why would forward and reverse inference generate 

different patterns of results?
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goal-directed cognition21–23 showed con-
sistent activation in the forward analysis 
but were relatively nonselective in the reverse analysis (Fig. 2). For 
emotion, the reverse inference map revealed much more selective 
activation in the amygdala and ventromedial prefrontal cortex 
(Fig. 3). For pain, the regions of maximal pain-related activation 
in the insula and DACC shifted from anterior foci in the forward 
analysis to posterior ones in the reverse analysis (Fig. 3). This is 
consistent with studies of nonhuman primates that have impli-
cated the dorsal posterior insula as a primary integration center 
for nociceptive afferents24 and with studies of humans in which 
anterior aspects of the so-called ‘pain matrix’ responded nonse-
lectively to multiple modalities25.

Several frontal regions that showed consistent activation for 
emotion and pain in the forward analysis were associated with a 
decreased likelihood that a study involved emotion or pain in the 
reverse inference analysis (Fig. 3). This seeming paradox reflected 
the fact that even though lateral and medial frontal regions had 
been consistently activated in studies of emotion and pain, they 
had been activated even more frequently in studies that did not 
involve emotion or pain (Supplementary Fig. 8). Thus, the fact 
that these regions showed involvement in pain and emotion prob-
ably reflected their much more general role in cognition (for 
example, sustained attention or goal-directed processing22,23) 
rather than processes specific to pain or emotion.

These results showed that without the ability to distinguish con-
sistency from selectivity, neuroimaging data can produce misleading 
inferences. For instance, neglecting the high base rate of DACC activ-
ity might lead researchers in the areas of cognitive control, pain and 
emotion to conclude that the DACC has a key role in each domain. 
Instead, because the DACC is activated consistently in all of these 
states, its activation may not be diagnostic of any one of them and 
conversely, might even predict their absence. The NeuroSynth frame-
work can potentially address this problem by enabling researchers to 
conduct quantitative reverse inference on a large scale.

Open-ended classification of cognitive states
An emerging frontier in human neuroimaging is brain ‘decoding’: 
inferring a person’s cognitive state from their observed brain activ-
ity. The problem of decoding is essentially a generalization of the 
univariate reverse inference problem addressed above: instead of 
predicting the likelihood of a particular cognitive state given acti-
vation at a single voxel, one can generate a corresponding predic-
tion based on an entire pattern of brain activity. The NeuroSynth 

framework is well positioned for such an approach: whereas previ-
ous decoding approaches have focused on discriminating between 
narrow sets of cognitive states and have required extensive train-
ing on raw fMRI datasets (for example, refs. 26–28), the breadth 
of cognitive concepts represented in the NeuroSynth database 
affords relatively open-ended decoding, with little or no training 
on new datasets.

To assess the ability of our approach to decode and classify 
cognitive states, we trained a naive Bayes classifier29 that could 
discriminate between flexible sets of cognitive states given new 
images as input (Fig. 1c). First, we tested the classifier’s ability to 
classify studies in the NeuroSynth database that had been associ-
ated with different terms. In a tenfold cross-validated analysis, 
the classifier discriminated between studies of working memory, 
emotion and pain with high sensitivity and specificity (Fig. 4a), 
showing that each of these domains had a relatively distinct neural 
signature (Fig. 4b).

To assess the classifier’s ability to decode cognitive states in 
individual human subjects, we applied the classifier to 281 sin-
gle-subject activation maps derived from contrasts between:  
n-back working memory performance and rest (94 maps); 
 negative and neutral emotional photographs (108 maps); and 
intense and mild thermal pain (79 maps). The classifier performed 
substantially above chance, identifying the originating study type 
with sensitivities of 94%, 70% and 65%, respectively (chance = 
33%), and specificities of 80%, 86% and 98% (Fig. 4a). Moreover, 
there were systematic differences in activation patterns for cor-
rectly and incorrectly classified subjects. For example, incorrectly  
classified subjects in physical pain tasks (Fig. 4c) systematically 
activated the lateral orbitofrontal cortex and dorsomedial prefrontal 
cortex but not secondary somatosensory cortex or the posterior 
insula, suggesting that the discomfort owing to noxious heat in 
these subjects may have been qualitatively different (for example,  
emotionally generated versus physically generated pain). Thus, 
these findings demonstrate the viability of decoding cognitive 
states in new subjects without training and suggest new hypoth-
eses for exploration.

Next, to generalize beyond working memory, emotion and 
pain, we selected 25 broad psychological terms that occurred at 
high frequency in the database (Fig. 5). We estimated classifi-
cation accuracy in tenfold cross-validated two-alternative and 
multiclass analyses. The classifier performed substantially above 

a

c

bFigure 4 | Three-way classification of working 
memory, emotion and pain. (a) Naive Bayes 
classifier performance when cross-validated on 
studies in the database (left) or applied to individual 
subjects from studies not in the database (right). 
(b) Whole-brain maximum posterior probability 
map; each voxel is colored by the term with the 
highest associated probability. (c) Whole-brain 
maps showing the proportion of individual subjects 
in the three pain studies (n = 79 subjects total) 
who showed activation at each voxel (P < 0.05, 
uncorrected), averaged separately for subjects who 
were classified correctly (n = 51 subjects; top) or 
incorrectly (n = 28 subjects; bottom). Regions are 
color-coded according to the proportion of subjects 
in the sample who showed activation at each voxel.

dACC = dorsal anterior cingulate cortex 



Amazing Things

• We can do forward vs. reverse inference about 
how brain area activation relates to cognitive 
function. 

• We can do cognitive state detection by using 
brain areas to classify which cognitive state is 
taking place.

Amazing Things

• We can do forward vs. reverse inference about 
how brain area activation relates to cognitive 
function. 

• We can do cognitive state detection by using 
brain areas to classify which cognitive state is 
taking place.

Classifiers
• The precise details of the method in Yarkoni et al. 

are outside the scope of our interest here, but it is 
still important to know something basic about their 
method: “classifiers.” 

• Big data are being used with machine learning 
techniques: techniques that can train computer 
systems to do intelligent (or seemingly intelligent) 
things, like classify.

Classifier
Perceivers Paired>Target, ts(8) > 2.7, ps < .05, no effect for
Nonperceivers) and the right dorsolateral pFC (∼BA 9/46,
Perceivers Paired > Target, t(8) = 2.5, p = .037, no effect
for Nonperceivers; Figure 6).

Temporal lobe regions spanning the left superior,
middle temporal, and inferior temporal gyrus (Figure 6)
exhibited the same pattern as reported above (inferior tem-
poral gyrus, ∼BA 20, Perceivers, Paired > Target, t(8) =

3.32, p = .01, no effect for Nonperceivers). The set of
regions that did not follow this pattern included the right
inferior, middle, and superior temporal gyri. This set of re-
gions only showed a marginally reliable effect for Paired >
Target scenes in Perceivers, t(8) = 1.85, p = .1. However,
they also showed the reverse Target > Paired scene effect
in Nonperceivers, t(9) = 2.36, p = .04.
We asked whether activation of regions in this inter-

action was related to distribution of looking on task. As
discussed, Perceivers and Nonperceivers were largely
differentiated by differences in proportion of looking di-
rected at the Object Surfaces. We conducted simple AOI
(Object 1 × Object 2 × Occluder) × Posttest Group
(Perceiver × Nonperceiver) ANOVAs separately mod-
eling Target and Paired Scene beta weights per ROI as
covariates. The only region that explained any of the var-
iance in the distribution of proportional looking was the
thalamus. Activations in both the Target, F(2, 30) = 12.6,
p < .001, and Paired Scenes, F(2, 30) = 4.89, p = .015,
interacted with the AOI variables. A positive correlation
between thalamic activity in the Target scene and propor-
tion of looking directed at the Occluder was found in
Perceivers, r(9) = 0.81, p = .003, and Nonperceivers,
r(10) = 0.78, p = .003. A positive correlation between
thalamic Paired Scene activity and proportional looking at
Object 2 obtained marginally in Nonperceivers, r(10) =
−0.62, p = .03, and reliably in Perceivers, r(9) = 0.73,
p= .01. We verified that simple fixation count and average
duration of fixation metrics did not interact with this acti-
vation in the same analysis, indicating that this finding is
not being driven by general eye movement differences.
See Table 2 for a list of regions active in the Scene Type

main effect. We highlight here regions relevant to object
recognition. Specifically, we found greater activations for
the Paired relative to the Target scenes in bilateral por-
tions of the LOC (∼BA 19), right inferior temporal and
fusiform gyri (∼BA 37), and bilateral parahippocampal
gyrus. Because of the differences in scene frequency within
each Scene Type, we examined all regions for patterns con-
sistent with repetition suppression (Grill-Spector, Henson,
& Martin, 2006) but found no clear indication of this effect.

Table 1. Interaction of Scene Type × Posttest Group

Side Areas

Coordinates

X Y Z

R Anterior cingulate 12 25 15

R Caudate nucleus 15 14 13

R Cerebellar tonsil 24 −57 −49

R Cingulate gyrus 11 9 28

R Fusiform gyrus 46 −3 −23

R Hippocampus 36 −19 −11

R Inferior temporal gyrus 46 −3 −30

R Middle frontal gyrus 47 −18 −7

R Middle temporal gyrus 47 −11 −9

R Superior frontal gyrus 19 28 49

R Superior temporal gyrus 45 24 32

R Thalamus 5 −16 8

L Anterior cingulate 13 −39 0

L Caudate nucleus −14 14 14

L Inferior frontal gyrus −32 39 2

L Inferior temporal gyrus −50 −8 −22

L Middle temporal gyrus −52 −8 −15

L Superior frontal gyrus −22 14 47

L Superior temporal gyrus −45 −11 −5

Corrected to p < .05.

Figure 6. Depicts activations
generated by the Posttest
Group × Scene Type
interaction (listed in Table 1).
The ROIs presented here
include the right dorsolateral
pFC and bilateral temporal lobe
regions. The colored bar reflects
the value intensity for the
interaction per region.
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Perceivers Paired>Target, ts(8) > 2.7, ps < .05, no effect for
Nonperceivers) and the right dorsolateral pFC (∼BA 9/46,
Perceivers Paired > Target, t(8) = 2.5, p = .037, no effect
for Nonperceivers; Figure 6).
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poral gyrus, ∼BA 20, Perceivers, Paired > Target, t(8) =

3.32, p = .01, no effect for Nonperceivers). The set of
regions that did not follow this pattern included the right
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gions only showed a marginally reliable effect for Paired >
Target scenes in Perceivers, t(8) = 1.85, p = .1. However,
they also showed the reverse Target > Paired scene effect
in Nonperceivers, t(9) = 2.36, p = .04.
We asked whether activation of regions in this inter-

action was related to distribution of looking on task. As
discussed, Perceivers and Nonperceivers were largely
differentiated by differences in proportion of looking di-
rected at the Object Surfaces. We conducted simple AOI
(Object 1 × Object 2 × Occluder) × Posttest Group
(Perceiver × Nonperceiver) ANOVAs separately mod-
eling Target and Paired Scene beta weights per ROI as
covariates. The only region that explained any of the var-
iance in the distribution of proportional looking was the
thalamus. Activations in both the Target, F(2, 30) = 12.6,
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p= .01. We verified that simple fixation count and average
duration of fixation metrics did not interact with this acti-
vation in the same analysis, indicating that this finding is
not being driven by general eye movement differences.
See Table 2 for a list of regions active in the Scene Type
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Perceivers Paired>Target, ts(8) > 2.7, ps < .05, no effect for
Nonperceivers) and the right dorsolateral pFC (∼BA 9/46,
Perceivers Paired > Target, t(8) = 2.5, p = .037, no effect
for Nonperceivers; Figure 6).

Temporal lobe regions spanning the left superior,
middle temporal, and inferior temporal gyrus (Figure 6)
exhibited the same pattern as reported above (inferior tem-
poral gyrus, ∼BA 20, Perceivers, Paired > Target, t(8) =

3.32, p = .01, no effect for Nonperceivers). The set of
regions that did not follow this pattern included the right
inferior, middle, and superior temporal gyri. This set of re-
gions only showed a marginally reliable effect for Paired >
Target scenes in Perceivers, t(8) = 1.85, p = .1. However,
they also showed the reverse Target > Paired scene effect
in Nonperceivers, t(9) = 2.36, p = .04.
We asked whether activation of regions in this inter-

action was related to distribution of looking on task. As
discussed, Perceivers and Nonperceivers were largely
differentiated by differences in proportion of looking di-
rected at the Object Surfaces. We conducted simple AOI
(Object 1 × Object 2 × Occluder) × Posttest Group
(Perceiver × Nonperceiver) ANOVAs separately mod-
eling Target and Paired Scene beta weights per ROI as
covariates. The only region that explained any of the var-
iance in the distribution of proportional looking was the
thalamus. Activations in both the Target, F(2, 30) = 12.6,
p < .001, and Paired Scenes, F(2, 30) = 4.89, p = .015,
interacted with the AOI variables. A positive correlation
between thalamic activity in the Target scene and propor-
tion of looking directed at the Occluder was found in
Perceivers, r(9) = 0.81, p = .003, and Nonperceivers,
r(10) = 0.78, p = .003. A positive correlation between
thalamic Paired Scene activity and proportional looking at
Object 2 obtained marginally in Nonperceivers, r(10) =
−0.62, p = .03, and reliably in Perceivers, r(9) = 0.73,
p= .01. We verified that simple fixation count and average
duration of fixation metrics did not interact with this acti-
vation in the same analysis, indicating that this finding is
not being driven by general eye movement differences.
See Table 2 for a list of regions active in the Scene Type
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gyrus. Because of the differences in scene frequency within
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& Martin, 2006) but found no clear indication of this effect.
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PerceiversPaired>Target,ts(8)>2.7,ps<.05,noeffectfor
Nonperceivers)andtherightdorsolateralpFC(∼BA9/46,
PerceiversPaired>Target,t(8)=2.5,p=.037,noeffect
forNonperceivers;Figure6).

Temporalloberegionsspanningtheleftsuperior,
middletemporal,andinferiortemporalgyrus(Figure6)
exhibitedthesamepatternasreportedabove(inferiortem-
poralgyrus,∼BA20,Perceivers,Paired>Target,t(8)=

3.32,p=.01,noeffectforNonperceivers).Thesetof
regionsthatdidnotfollowthispatternincludedtheright
inferior,middle,andsuperiortemporalgyri.Thissetofre-
gionsonlyshowedamarginallyreliableeffectforPaired>
TargetscenesinPerceivers,t(8)=1.85,p=.1.However,
theyalsoshowedthereverseTarget>Pairedsceneeffect
inNonperceivers,t(9)=2.36,p=.04.

Weaskedwhetheractivationofregionsinthisinter-
actionwasrelatedtodistributionoflookingontask.As
discussed,PerceiversandNonperceiverswerelargely
differentiatedbydifferencesinproportionoflookingdi-
rectedattheObjectSurfaces.WeconductedsimpleAOI
(Object1×Object2×Occluder)×PosttestGroup
(Perceiver×Nonperceiver)ANOVAsseparatelymod-
elingTargetandPairedScenebetaweightsperROIas
covariates.Theonlyregionthatexplainedanyofthevar-
ianceinthedistributionofproportionallookingwasthe
thalamus.ActivationsinboththeTarget,F(2,30)=12.6,
p<.001,andPairedScenes,F(2,30)=4.89,p=.015,
interactedwiththeAOIvariables.Apositivecorrelation
betweenthalamicactivityintheTargetsceneandpropor-
tionoflookingdirectedattheOccluderwasfoundin
Perceivers,r(9)=0.81,p=.003,andNonperceivers,
r(10)=0.78,p=.003.Apositivecorrelationbetween
thalamicPairedSceneactivityandproportionallookingat
Object2obtainedmarginallyinNonperceivers,r(10)=
−0.62,p=.03,andreliablyinPerceivers,r(9)=0.73,
p=.01.Weverifiedthatsimplefixationcountandaverage
durationoffixationmetricsdidnotinteractwiththisacti-
vationinthesameanalysis,indicatingthatthisfindingis
notbeingdrivenbygeneraleyemovementdifferences.

SeeTable2foralistofregionsactiveintheSceneType
maineffect.Wehighlighthereregionsrelevanttoobject
recognition.Specifically,wefoundgreateractivationsfor
thePairedrelativetotheTargetscenesinbilateralpor-
tionsoftheLOC(∼BA19),rightinferiortemporaland
fusiformgyri(∼BA37),andbilateralparahippocampal
gyrus.Becauseofthedifferencesinscenefrequencywithin
eachSceneType,weexaminedallregionsforpatternscon-
sistentwithrepetitionsuppression(Grill-Spector,Henson,
&Martin,2006)butfoundnoclearindicationofthiseffect.

Table1.InteractionofSceneType×PosttestGroup

SideAreas

Coordinates

XYZ

RAnteriorcingulate122515

RCaudatenucleus151413

RCerebellartonsil24−57−49

RCingulategyrus11928

RFusiformgyrus46−3−23

RHippocampus36−19−11

RInferiortemporalgyrus46−3−30

RMiddlefrontalgyrus47−18−7

RMiddletemporalgyrus47−11−9

RSuperiorfrontalgyrus192849

RSuperiortemporalgyrus452432

RThalamus5−168

LAnteriorcingulate13−390

LCaudatenucleus−141414

LInferiorfrontalgyrus−32392

LInferiortemporalgyrus−50−8−22

LMiddletemporalgyrus−52−8−15

LSuperiorfrontalgyrus−221447

LSuperiortemporalgyrus−45−11−5

Correctedtop<.05.

Figure6.Depictsactivations
generatedbythePosttest
Group×SceneType
interaction(listedinTable1).
TheROIspresentedhere
includetherightdorsolateral
pFCandbilateraltemporallobe
regions.Thecoloredbarreflects
thevalueintensityforthe
interactionperregion.
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Perceivers Paired>Target, ts(8) > 2.7, ps < .05, no effect for
Nonperceivers) and the right dorsolateral pFC (∼BA 9/46,
Perceivers Paired > Target, t(8) = 2.5, p = .037, no effect
for Nonperceivers; Figure 6).

Temporal lobe regions spanning the left superior,
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gions only showed a marginally reliable effect for Paired >
Target scenes in Perceivers, t(8) = 1.85, p = .1. However,
they also showed the reverse Target > Paired scene effect
in Nonperceivers, t(9) = 2.36, p = .04.
We asked whether activation of regions in this inter-

action was related to distribution of looking on task. As
discussed, Perceivers and Nonperceivers were largely
differentiated by differences in proportion of looking di-
rected at the Object Surfaces. We conducted simple AOI
(Object 1 × Object 2 × Occluder) × Posttest Group
(Perceiver × Nonperceiver) ANOVAs separately mod-
eling Target and Paired Scene beta weights per ROI as
covariates. The only region that explained any of the var-
iance in the distribution of proportional looking was the
thalamus. Activations in both the Target, F(2, 30) = 12.6,
p < .001, and Paired Scenes, F(2, 30) = 4.89, p = .015,
interacted with the AOI variables. A positive correlation
between thalamic activity in the Target scene and propor-
tion of looking directed at the Occluder was found in
Perceivers, r(9) = 0.81, p = .003, and Nonperceivers,
r(10) = 0.78, p = .003. A positive correlation between
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p= .01. We verified that simple fixation count and average
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vation in the same analysis, indicating that this finding is
not being driven by general eye movement differences.
See Table 2 for a list of regions active in the Scene Type

main effect. We highlight here regions relevant to object
recognition. Specifically, we found greater activations for
the Paired relative to the Target scenes in bilateral por-
tions of the LOC (∼BA 19), right inferior temporal and
fusiform gyri (∼BA 37), and bilateral parahippocampal
gyrus. Because of the differences in scene frequency within
each Scene Type, we examined all regions for patterns con-
sistent with repetition suppression (Grill-Spector, Henson,
& Martin, 2006) but found no clear indication of this effect.

Table 1. Interaction of Scene Type × Posttest Group

Side Areas

Coordinates

X Y Z

R Anterior cingulate 12 25 15

R Caudate nucleus 15 14 13

R Cerebellar tonsil 24 −57 −49

R Cingulate gyrus 11 9 28

R Fusiform gyrus 46 −3 −23

R Hippocampus 36 −19 −11

R Inferior temporal gyrus 46 −3 −30

R Middle frontal gyrus 47 −18 −7

R Middle temporal gyrus 47 −11 −9

R Superior frontal gyrus 19 28 49

R Superior temporal gyrus 45 24 32

R Thalamus 5 −16 8

L Anterior cingulate 13 −39 0

L Caudate nucleus −14 14 14

L Inferior frontal gyrus −32 39 2

L Inferior temporal gyrus −50 −8 −22

L Middle temporal gyrus −52 −8 −15

L Superior frontal gyrus −22 14 47

L Superior temporal gyrus −45 −11 −5

Corrected to p < .05.

Figure 6. Depicts activations
generated by the Posttest
Group × Scene Type
interaction (listed in Table 1).
The ROIs presented here
include the right dorsolateral
pFC and bilateral temporal lobe
regions. The colored bar reflects
the value intensity for the
interaction per region.
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PerceiversPaired>Target,ts(8)>2.7,ps<.05,noeffectfor
Nonperceivers)andtherightdorsolateralpFC(∼BA9/46,
PerceiversPaired>Target,t(8)=2.5,p=.037,noeffect
forNonperceivers;Figure6).

Temporalloberegionsspanningtheleftsuperior,
middletemporal,andinferiortemporalgyrus(Figure6)
exhibitedthesamepatternasreportedabove(inferiortem-
poralgyrus,∼BA20,Perceivers,Paired>Target,t(8)=

3.32,p=.01,noeffectforNonperceivers).Thesetof
regionsthatdidnotfollowthispatternincludedtheright
inferior,middle,andsuperiortemporalgyri.Thissetofre-
gionsonlyshowedamarginallyreliableeffectforPaired>
TargetscenesinPerceivers,t(8)=1.85,p=.1.However,
theyalsoshowedthereverseTarget>Pairedsceneeffect
inNonperceivers,t(9)=2.36,p=.04.

Weaskedwhetheractivationofregionsinthisinter-
actionwasrelatedtodistributionoflookingontask.As
discussed,PerceiversandNonperceiverswerelargely
differentiatedbydifferencesinproportionoflookingdi-
rectedattheObjectSurfaces.WeconductedsimpleAOI
(Object1×Object2×Occluder)×PosttestGroup
(Perceiver×Nonperceiver)ANOVAsseparatelymod-
elingTargetandPairedScenebetaweightsperROIas
covariates.Theonlyregionthatexplainedanyofthevar-
ianceinthedistributionofproportionallookingwasthe
thalamus.ActivationsinboththeTarget,F(2,30)=12.6,
p<.001,andPairedScenes,F(2,30)=4.89,p=.015,
interactedwiththeAOIvariables.Apositivecorrelation
betweenthalamicactivityintheTargetsceneandpropor-
tionoflookingdirectedattheOccluderwasfoundin
Perceivers,r(9)=0.81,p=.003,andNonperceivers,
r(10)=0.78,p=.003.Apositivecorrelationbetween
thalamicPairedSceneactivityandproportionallookingat
Object2obtainedmarginallyinNonperceivers,r(10)=
−0.62,p=.03,andreliablyinPerceivers,r(9)=0.73,
p=.01.Weverifiedthatsimplefixationcountandaverage
durationoffixationmetricsdidnotinteractwiththisacti-
vationinthesameanalysis,indicatingthatthisfindingis
notbeingdrivenbygeneraleyemovementdifferences.

SeeTable2foralistofregionsactiveintheSceneType
maineffect.Wehighlighthereregionsrelevanttoobject
recognition.Specifically,wefoundgreateractivationsfor
thePairedrelativetotheTargetscenesinbilateralpor-
tionsoftheLOC(∼BA19),rightinferiortemporaland
fusiformgyri(∼BA37),andbilateralparahippocampal
gyrus.Becauseofthedifferencesinscenefrequencywithin
eachSceneType,weexaminedallregionsforpatternscon-
sistentwithrepetitionsuppression(Grill-Spector,Henson,
&Martin,2006)butfoundnoclearindicationofthiseffect.

Table1.InteractionofSceneType×PosttestGroup

SideAreas

Coordinates

XYZ

RAnteriorcingulate122515

RCaudatenucleus151413

RCerebellartonsil24−57−49

RCingulategyrus11928

RFusiformgyrus46−3−23

RHippocampus36−19−11

RInferiortemporalgyrus46−3−30

RMiddlefrontalgyrus47−18−7

RMiddletemporalgyrus47−11−9

RSuperiorfrontalgyrus192849

RSuperiortemporalgyrus452432

RThalamus5−168

LAnteriorcingulate13−390

LCaudatenucleus−141414

LInferiorfrontalgyrus−32392

LInferiortemporalgyrus−50−8−22

LMiddletemporalgyrus−52−8−15

LSuperiorfrontalgyrus−221447

LSuperiortemporalgyrus−45−11−5

Correctedtop<.05.
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chance in both two-alternative classifi-
cation (mean pairwise accuracy of 72%; 
Fig. 4) and relatively open-ended multi-
class classification on up to ten simulta-
neous terms (Supplementary Fig. 9). The 
results provided insights into the similar-
ity structure of neural representation for 
different processes. For instance, pain was 
highly discriminable from other psycho-
logical concepts (all pairwise accuracies > 
74%), which suggests that pain perception 
might be a distinctive state that is grouped 
neither with other sensory modalities 
nor with other affective concepts such as 
arousal and emotion. Conversely, concep-
tually related terms such as ‘executive’ and ‘working memory’ 
could not be distinguished at a rate different from chance, reflect-
ing their closely overlapping usage in the literature.

DISCUSSION
Using the NeuroSynth framework, first we conducted large-scale 
automated neuroimaging meta-analyses of broad psychological 
concepts that are lexically well represented in literature. A key 
benefit of NeuroSynth is the ability to quantitatively distinguish 
forward inference from reverse inference, which should allow 
researchers to assess the specificity of mappings between neural 
and cognitive function, a long-standing goal of cognitive neuro-
science research. Although considerable work remains to be done 
to improve the specificity and accuracy of the tools developed 
here, we expect quantitative reverse inference to be increasingly 
important in future meta-analytic studies.

Second, we decoded broad psychological states in a relatively 
open-ended way in individual subjects; this was, to our know-
ledge, the first application of a domain-general classifier that can 
distinguish a broad range of cognitive states based solely on prior 
literature. The ability to decode brain activity without previous 
training data or knowledge of the ‘ground truth’ for an individ-
ual is particularly promising. Our results raise the prospect that 
legitimate ‘mind reading’ of more nuanced cognitive and affective 
states might eventually become feasible with additional technical 
advances. However, the present NeuroSynth implementation 
 provides no basis for such inferences, as it distinguishes only 
between relatively broad psychological categories.

Third, we designed our platform to support immediate use 
in a broad range of neuroimaging applications. To name just a 
few potential applications, researchers could use these tools and 

results to define region-of-interest masks or Bayesian priors in 
hypothesis-driven analyses; to conduct quantitative compari-
sons between meta-analysis maps of different terms of interest; 
to use the automatically extracted coordinate database as a start-
ing point for more refined manual meta-analyses; to draw more 
rigorous reverse inferences when interpreting results by refer-
ring to empirically established mappings between specific regions 
and cognitive functions; and to extract the terms that are most 
 frequently associated with an active region or distributed pattern 
of activity, thereby contextualizing new research findings on the 
basis of published data.

Of course, the NeuroSynth framework is not a panacea for the 
many challenges that face cognitive neuroscientists, and several 
limitations remain to be addressed. We focus on two in partic-
ular here. First, the present reliance on a purely lexical coding 
approach, albeit effective, is suboptimal in that it relies on tradi-
tional psychological terms that do not carve the underlying neural 
substrates at their natural joints, do not capitalize on redundancy 
across terms (for example, ‘pain’, ‘nociception’ and ‘noxious’ over-
lap closely but are modeled separately) and do not allow closely 
related constructs to be easily distinguished (for example, physical 
versus emotional pain). Future efforts could overcome these limi-
tations by using controlled vocabularies or ontologies for query 
expansion, developing extensions for conducting multiterm 
analyses and extracting topic-based representations of article text 
(Supplementary Note).

Second, although our automated tools accurately extract coor-
dinates from articles, they cannot extract information about 
fine-grained cognitive states (for example, different negative 
emotions). Thus, the NeuroSynth framework is currently useful 
primarily for large-scale analyses involving broad domains and 

Figure 5 | Accuracy of the naive Bayes classifier 
when discriminating between all possible 
pairwise combinations of 25 key terms. Each cell 
represents a cross-validated binary classification 
between the intersecting row and column terms. 
Off-diagonal values reflect accuracy averaged 
across the two terms. Diagonal values reflect 
the mean classification accuracy for each 
term. Terms were ordered using the first two 
factors of a principal components analysis. 
All accuracy rates above 58% and 64% are 
statistically significant at P < 0.05 and P < 
0.001, respectively.
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when discriminating between all possible 
pairwise combinations of 25 key terms. Each cell 
represents a cross-validated binary classification 
between the intersecting row and column terms. 
Off-diagonal values reflect accuracy averaged 
across the two terms. Diagonal values reflect 
the mean classification accuracy for each 
term. Terms were ordered using the first two 
factors of a principal components analysis. 
All accuracy rates above 58% and 64% are 
statistically significant at P < 0.05 and P < 
0.001, respectively.
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related constructs to be easily distinguished (for example, physical 
versus emotional pain). Future efforts could overcome these limi-
tations by using controlled vocabularies or ontologies for query 
expansion, developing extensions for conducting multiterm 
analyses and extracting topic-based representations of article text 
(Supplementary Note).

Second, although our automated tools accurately extract coor-
dinates from articles, they cannot extract information about 
fine-grained cognitive states (for example, different negative 
emotions). Thus, the NeuroSynth framework is currently useful 
primarily for large-scale analyses involving broad domains and 
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across the two terms. Diagonal values reflect 
the mean classification accuracy for each 
term. Terms were ordered using the first two 
factors of a principal components analysis. 
All accuracy rates above 58% and 64% are 
statistically significant at P < 0.05 and P < 
0.001, respectively.

Amazing Things

• We can do forward vs. reverse inference about 
how brain area activation relates to cognitive 
function. 

• We can do cognitive state detection by using 
brain areas to classify which cognitive state is 
taking place.

http://neurosynth.org/analyses/terms/



Eating (68 studies) Language (823 studies)

Visual (2,347 studies) For Lab Next Week
• We will not concern ourselves with highly specific brain 

areas (though you are welcome to consider them if you 
know them); instead let’s focus on exploration based on 
very high-level systems neuroscience: the lobes.



Big Data

• Today: the basics, and culturomics. 

• Thursday: NeuroSynth. 

• Next week: language analysis and modeling. 


