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What’s Next?

Gerhard et al. “The Connectome Viewer Toolkit: An open source framework to manage, analyze, and visualize connectomes"



From reading #2

openly available for the expert and lay public to explore and examine using conventional
web browsers, or to study them in greater detail using more advanced interactive tools.

A map of the Human Connectome
The connectome may be defined as the complete, point-to-point spatial connectivity of
neural pathways in the brain.4 This detailed, multiscaled, and multivariate matrix is defined
computationally and statistically using sophisticated in vivo neuroimaging data, electrical
recordings, and postmortem tissue samples to provide a detailed framework to understand
the anatomically based interactions of functional regions of the brain. The connectome gives
rise to population-level atlases of distributed connectivity and makes it possible to assess
disruptions of connectivity in clinical samples. Demographic, genomic, and cognitive/
behavioral data can be superimposed on the connectome to permit inferences concerning
genetic and other influences on connectedness.5, 6 Information concerning connectivity is
essential for understanding fundamental cognitive operations, systems-level brain activity,
conditional structure-function models of brain, and debilitating brain diseases.

Mapping the functional and structural connectivity of the brain using the latest
neuroimaging methods must be accompanied by the tools needed to explore those data and
to appreciate their richness. The expectation is that HCP will (1) have immediate impact on
the field of neuroscience and beyond; (2) provide a framework and set of tools with
enduring utility and value; and (3) enable the broad community of investigators to generate
and test new hypotheses based on the HCP data corpus and summary maps, thereby
informing and advancing their own research priorities.

Methods
Historically, most neuroimaging studies of the human brain have employed a modular view
of the brain, e.g., region X is responsible for function Y. This modularity of mind approach,
however, is insufficient for describing the vast set of cognitive and behavioral operations of
which the brain is capable. A more appropriate approach considers which network of two or
more connected and interacting regions are employed for a given function. It has not always
been possible to view networks in the brain; it was not until recently that any magnetic
resonance imaging (MRI) sequence was capable of discerning individual axon bundles.

Traditional anatomical acquisitions used scanning protocols designed to exploit the
differences in T1 and T2 relaxation times between fat and water, as well as the proton
density of tissues. These sequences are ideal for measuring the boundaries between gray
matter, white matter, and cerebrospinal fluid (CSF), as white matter has the highest fat
content and CSF has the highest water content. However, in these scans, the brain’s white
matter is merely seen as an undifferentiated, homogeneous mass. Other types of scanning
protocols may be used to measure brain chemistry, e.g., MR spectroscopy, as well as
cerebral blood flow, e.g., arterial spin labeling, and even changes in cerebral blood
oxygenation levels, e.g., BOLD fMRI.

The development of MRI methods sensitive to water diffusion made it possible to
reconstruct neural fiber pathways in vivo. While most commonly available 1.5 and 3 Tesla
MRI systems can perform such data acquisition, new scanners, with more advanced gradient
capabilities, special acquisition sequences, and multi-channel head coils, can improve
resolution and increase the amount of connectomic information acquired from any given
subject. Our initial work at high magnetic fields, performing diffusion imaging on 7-Tesla
scanners,7 shows that the enhanced signal-to-noise ratio can be used to more accurately
measure properties of white matter fibers between two or more regions and, therefore, better
characterize the process of information exchange between them.
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New Designs?

BCI: Brain-Computer Interfaces

E.g., EEG systems (Emotiv, Neurosky)



ERP Movies... ERP Movies...

Next…

• The dominant thread in neuroscience and cognitive 
neuroscience for over a century has been 
functional localization — region X, function Y. 

• There is a rapidly growing movement — also old in 
its underpinnings, but now backed with wicked 
new techniques — to study the networks of areas 
that underlie function.

Why?

• Two studies suggesting strict localization 
interpretation is problematic:  

• Thyreau, B., et al. (2012). Very large fMRI study using the IMAGEN database: Sensitivity–specificity 
and population effect modeling in relation to the underlying anatomy. NeuroImage, 61(1), 295-303. 

• Gonzalez-Castillo, et al. (2012). Whole-brain, time-locked activation with simple tasks revealed 
using massive averaging and model-free analysis. Proceedings of the National Academy of 
Sciences, 109(14), 5487-5492.
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The brain is the body’s largest energy consumer, even in the ab-
sence of demanding tasks. Electrophysiologists report on-going
neuronal firing during stimulation or task in regions beyond those
of primary relationship to the perturbation. Although the biolog-
ical origin of consciousness remains elusive, it is argued that it
emerges from complex, continuous whole-brain neuronal collabo-
ration. Despite converging evidence suggesting the whole brain is
continuously working and adapting to anticipate and actuate in
response to the environment, over the last 20 y, task-based func-
tional MRI (fMRI) have emphasized a localizationist view of brain
function, with fMRI showing only a handful of activated regions in
response to task/stimulation. Here, we challenge that view with
evidence that under optimal noise conditions, fMRI activations
extend well beyond areas of primary relationship to the task;
and blood-oxygen level-dependent signal changes correlated with
task-timing appear in over 95% of the brain for a simple visual
stimulation plus attention control task. Moreover, we show that
response shape varies substantially across regions, and that
whole-brain parcellations based on those differences produce dis-
tributed clusters that are anatomically and functionally meaning-
ful, symmetrical across hemispheres, and reproducible across
subjects. These findings highlight the exquisite detail lying in fMRI
signals beyond what is normally examined, and emphasize both
the pervasiveness of false negatives, and how the sparseness of
fMRI maps is not a result of localized brain function, but a conse-
quence of high noise and overly strict predictive response models.

fMRI | activation extent | transient responses | clustering

For years, positive gamma-like responses were the primary type
of blood-oxygen level-dependent (BOLD) response that

researchers used as indirect markers of neuronal activity. Other
methods for extracting neural information from BOLD time se-
ries are increasingly popular today. Spontaneous fluctuations
recorded in the absence of a controlled stimulus have rapidly
gained attention and shown great potential in the study of normal
(1, 2) and abnormal brain function (3, 4). Multivariate methods
have demonstrated that detailed information about stimulus in-
put can be obtained by jointly analyzing activity in voxels that
show no significance using conventional univariate analysis tech-
niques. Even within the framework of univariate analysis, con-
sideration of BOLD responses other than conventional positively
sustained responses, such as negatively correlated or stimulus
onset/offset responses, has proven useful at differentiating audi-
tory or visual stimuli within primary sensory cortices (5, 6).
Despite all such evidence highlighting the exquisite sensitivity

of the BOLD contrast to underlying brain function, few block-
design task-based functional MRI (fMRI) studies examine
temporal responses other than the conventional positively sus-
tained gamma-like response or conduct secondary analysis on
areas of no statistical significance. Factors contributing to this
practice may include the lack of desire to look at temporal dy-
namics once a region is labeled statistically significant, or the fact
that conventional responses have proven sufficient to uncover

the neuronal correlates of a myriad of human behaviors.
Unfortunately, if, as the previous discussion suggests, true neu-
ronal responses are continuously passing undetected in fMRI,
our conceptualizations of brain function based on task-based
fMRI research might be incomplete.
As Lieberman and Cunningham stated previously (7), a long-

standing preoccupation with the reduction of false-positives in
fMRI creates a bias toward reporting only large and obvious
effects, neglecting what perhaps represents more subtle complex
cognitive and affective processes. Here, we explore this hypoth-
esis in detail and evaluate whether the sparseness of task-based
fMRI activation maps is real or a consequence of noise levels and
modeling decisions. We approach this question using low-noise
fMRI time-series generated by combining unconventionally large
amounts of data (100 runs per subject). With these data, we also
evaluate how regional differences in BOLD response may reveal
how distant regions collaborate during a particular task.

What Is the True Extent of BOLD Activations? Previous research has
shown that if fMRI noise is reduced by time-series averaging,
activation area significantly increases with number of averaged
runs (8, 9). Fast increases in activation area during initial aver-
aging stages were followed by a progressive decrease in the rate
of area growth with averaging. Still, no asymptotic behavior was
reported. Moreover, voxels with subtle hemodynamic responses
not strong enough to attain significance with fewer trials showed
no significant differences in hemodynamic delay from voxels that
were significantly active with fewer trials (8). This finding implies
that increases in activation area could not be accounted for as
being the result of unaccounted-for hemodynamic delay differ-
ences (i.e., large vessels). Similarly, the use of more versatile
response models (10) or modeling of additional hemodynamic
response shapes (e.g., negatively correlated or stimulus onset/
offset responses) have been reported to also increase activation
area (5, 6) and account for additional variability (11).
Understanding how noise levels and choice of a predictive

BOLD-response model influences fMRI activation maps is
a necessary step toward comprehending how much procedural
decisions shape fMRI results and obscure the “true” amount of
neuronal resources recruited by an experimental perturbation. In
other words, when subjects perform a task, is only a reduced set
of isolated regions actively recruited? Or, does the majority of the
brain show BOLD signal modulation consistent with task timing
but pass undetected? To answer these questions we acquired
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http://blogs.discovermagazine.com/crux/2012/04/25/does-brain-scanning-show-just-the-tip-of-the-iceberg/

Neuroskeptic

http://www.nature.com/news/brain-imaging-fmri-2-0-1.10365



Diffusion MRI
• “Diffusion tensor imaging.” 

• Until recently mostly “structural” technique. 

• Can detect subtle magnetic effects of axonal water 
diffusion 

• Direction of axons can give us a picture of 
“information flow.”



openly available for the expert and lay public to explore and examine using conventional
web browsers, or to study them in greater detail using more advanced interactive tools.

A map of the Human Connectome
The connectome may be defined as the complete, point-to-point spatial connectivity of
neural pathways in the brain.4 This detailed, multiscaled, and multivariate matrix is defined
computationally and statistically using sophisticated in vivo neuroimaging data, electrical
recordings, and postmortem tissue samples to provide a detailed framework to understand
the anatomically based interactions of functional regions of the brain. The connectome gives
rise to population-level atlases of distributed connectivity and makes it possible to assess
disruptions of connectivity in clinical samples. Demographic, genomic, and cognitive/
behavioral data can be superimposed on the connectome to permit inferences concerning
genetic and other influences on connectedness.5, 6 Information concerning connectivity is
essential for understanding fundamental cognitive operations, systems-level brain activity,
conditional structure-function models of brain, and debilitating brain diseases.

Mapping the functional and structural connectivity of the brain using the latest
neuroimaging methods must be accompanied by the tools needed to explore those data and
to appreciate their richness. The expectation is that HCP will (1) have immediate impact on
the field of neuroscience and beyond; (2) provide a framework and set of tools with
enduring utility and value; and (3) enable the broad community of investigators to generate
and test new hypotheses based on the HCP data corpus and summary maps, thereby
informing and advancing their own research priorities.

Methods
Historically, most neuroimaging studies of the human brain have employed a modular view
of the brain, e.g., region X is responsible for function Y. This modularity of mind approach,
however, is insufficient for describing the vast set of cognitive and behavioral operations of
which the brain is capable. A more appropriate approach considers which network of two or
more connected and interacting regions are employed for a given function. It has not always
been possible to view networks in the brain; it was not until recently that any magnetic
resonance imaging (MRI) sequence was capable of discerning individual axon bundles.

Traditional anatomical acquisitions used scanning protocols designed to exploit the
differences in T1 and T2 relaxation times between fat and water, as well as the proton
density of tissues. These sequences are ideal for measuring the boundaries between gray
matter, white matter, and cerebrospinal fluid (CSF), as white matter has the highest fat
content and CSF has the highest water content. However, in these scans, the brain’s white
matter is merely seen as an undifferentiated, homogeneous mass. Other types of scanning
protocols may be used to measure brain chemistry, e.g., MR spectroscopy, as well as
cerebral blood flow, e.g., arterial spin labeling, and even changes in cerebral blood
oxygenation levels, e.g., BOLD fMRI.

The development of MRI methods sensitive to water diffusion made it possible to
reconstruct neural fiber pathways in vivo. While most commonly available 1.5 and 3 Tesla
MRI systems can perform such data acquisition, new scanners, with more advanced gradient
capabilities, special acquisition sequences, and multi-channel head coils, can improve
resolution and increase the amount of connectomic information acquired from any given
subject. Our initial work at high magnetic fields, performing diffusion imaging on 7-Tesla
scanners,7 shows that the enhanced signal-to-noise ratio can be used to more accurately
measure properties of white matter fibers between two or more regions and, therefore, better
characterize the process of information exchange between them.
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reading #2

Bota et al., “Architecture of the cerebral cortical association connectome underlying cognition”(4): excitatory (glutamatergic) connections established between
cortical regions in one hemisphere by pyramidal neurons, as
opposed to commissural connections between right and left hemi-
spheres (a logical next step, followed by axonal inputs and outputs

of the cortex). The other goal was to propose a comprehensive
and systematic correlative bridge between data from experi-
mental pathway tracing in animals and diffusion tractography
in humans.
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Fig. 1. Rat cortical association connectome. Directed synaptic macroconnection matrix with gray-matter region sequence (top left to right, list of macro-
connection origins, from; left side top to bottom, same list of macroconnection terminations, to) in the Swanson-04 (16) structure–function nomenclature
hierarchy. The main diagonal (top left to bottom right) is empty because connections within a region are not considered in the analysis. Color scale of
connection weight is at bottom; abbreviations are in Fig. S2.

E2094 | www.pnas.org/cgi/doi/10.1073/pnas.1504394112 Bota et al.

Network Methods
• Different from (but can be related to) neural networks. 

Sometimes referred to as “graph theory.” 

• Neural networks are a tradition in computational 
modeling of cognition. 

• Graph theory is a mathematical method for studying 
the structure of networks. 

• Each brain area is a “node” and each connection is 
called an “edge.” We can analyze the structure of the 
network and its functional implications.

Example
• What is a “small world.”

From Watts & Strogatz

clustering (C): 
“two friends of yours are also friends of each other” 

path length (λ): 
getting from person A to person B in how many steps?



LBP40 atlas24, the AAL atlas25, the Jülich histological atlases26, the Johns-Hopkins DTI-
based atlases27, to form seed points.

Work to automate such procedures is an active area of computational research. Several fiber
clustering algorithms can identify tracts of various sizes.28–30 Given a set of fiber tracts,
spectral clustering first projects them into an embedding space and then performs standard
clustering in this space.31, 32 Compared to other fiber clustering algorithms,28, 30, 33 spectral
clustering captures the intrinsic relation of fiber bundles and is robust to pose variations (cf.
the spectral modeling of intrinsic geometry in 3D shape analysis34–36). Spectral clustering
techniques are straightforward to implement on many computer systems as they only
involve matrix-based computations, but given the number of them being performed, this can
necessitate the use of large-scale CPU architectures. Even so, without including anatomical
information explicitly, the resulting tracts may not match anatomical expectations. Newer
methods can combine atlases with pattern recognition methods, to automatically group
fibers into tracts, avoiding the labor-intensive task of interactive manual labeling.37, 38

Networks in the Connectome

Once structural connectivity has been mapped for the brain, properties of the resulting
networks can be studied by adapting some of the core constructs from graph theory.39, 40 In
graph theory, a graph is any representation of a network in terms of a set of nodes and
connections through which the nodes interact. In the human brain, gray matter regions may
be treated as nodes and the axonal bundles, which can be estimated from dMRI, form the
connections of the graph. Networks are often classified according to two metrics: a
clustering coefficient (C) which measures how connected each node is, and the characteristic
path length (λ), which measures the average distance between nodes, where λ is inversely
related to network efficiency. We note that the physical length of the connection is not
considered by these metrics, only the number of network nodes that must be traversed to go
from one point in the network to another. For many years, networks were classified as either
regular (high C and high λ) or random (low C and low λ). In 1998, it was observed that
many non-biological networks, such as networks of film actors or power grids, did not fit
well into either of these categories. Therefore, a new class of network, called the “small
world” network, was introduced as having a high C, like regular networks, and a low λ, like
random networks.41 The rationale for examining “small worldness” in the brain using
neuroimaging-derived connectivity matrices is that it is possible to measure the capacity of
the cortex to process information.42

Recently, this small world network modeling approach has been applied to the study of
structural and functional connectivity of the human brain because it seems to capture many
relevant features, such as high local clustering (cortical regions) combined with long-
distance connections between clusters (large white matter tracts).40 Additionally, two BOLD
fMRI studies have demonstrated that the efficiency of the human cortex is correlated with
intelligence quotient (IQ) such that higher IQ is associated with a more efficient cortical
network, i.e., those having a “shorter” λ.31, 43 These methods have also been applied to
large populations of subjects to demonstrate that the overall efficiency of the brain decreases
with age44 and changes during development.45 Additionally, graph theory constructs have
been used to reveal changes in the neuroanatomical networks of subjects blind from an early
age46 and changes in the functional networks of attention-deficit hyperactivity disorder
(ADHD) subjects.47 Indeed, the mapping of the properties, organization, and structure of
brain networks will require that new network theoretical metrics be developed as we extract
still finer-grained elements worthy of characterization for healthy as well as diseased or
damaged networks.
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Meunier et al., “Modular and hierarchically modular organization of brain networks”

S. Kean, “Phineas Gage, Neuroscience’s Most Famous Patient”

http://www.openconnectomeproject.org/

http://www.humanconnectomeproject.org/data/

http://www.cmtk.org/

Final Paper Notes
• Conventional structure: Introduction, Methods, 
Results, Conclusion — that’s fine. 

• Philosophy final papers: Essay style narrative 
weaving from thesis to argument to conclusion 
(with background review). 

• Neurosynth project may be Introduction, 
Analyses, Conclusion.


