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Must-Know Bayes

• Bayesian accounts of cognition are still on the rise; 
have become heavily influential in: perception, 
decision-making and reasoning, linguistics, 
categorization and category learning, semantic 
memory, … 

• Rarely critiqued, until recently. E.g., intense 
critique: Marcus & Davis, 2013, in reading 2.

Bayes can be seen
as a “mixed theory”:
it is both symbolic,
but also intrinsically

probabilistic
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General Article

Should the human mind be seen as an engine of proba-
bilistic inference, yielding optimal or near-optimal per-
formance, as several recent prominent articles have 
suggested (Frank & Goodman, 2012; Gopnik, 2012; 
Téglás et al., 2011; Tenenbaum, Kemp, Griffiths, & 
Goodman, 2011)? Tenenbaum et al. (2011) argued that 
“over the past decade, many aspects of higher-level cog-
nition have been illuminated by the mathematics of 
Bayesian statistics” (pp. 1279–1280), pointing to treat-
ments of language; memory; sensorimotor systems; judg-
ments of causal strength; diagnostic and conditional 
reasoning; human notions of similarity, representative-
ness, and randomness; and predictions about the future 
of everyday events.

In support of this view, researchers have combined 
experimental data with precise, elegant models that pro-
vide remarkably good quantitative fits. For example, Xu 
and Tenenbaum (2007) presented a well-motivated prob-
abilistic model “based on principles of rational statistical 
inference” (p. 246) that closely fit adults’ and children’s 
generalization of novel words to categories at different 
levels of abstraction (e.g., “green pepper” vs. “pepper” vs. 
“vegetable”) as a function of how labeled examples of 
those categories were distributed.

In these models, cognition is viewed as a process of 
drawing inferences from observed data in a fashion nor-
matively justified by mathematical probability theory. In 

probability theory, this kind of inference is governed by 
Bayes’s law. Let D be the data and H

1
 through H

k
 be 

hypotheses; assume that it is known that exactly one of 
the hypotheses is true. Bayes’s law states that for each 
hypothesis,
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In this equation, p(H
i
|D) is the posterior probability of 

the hypothesis H
i
 given that the data D have been 

observed; p(H
i
) is the prior probability that H

i
 is true 

before any data have been observed; and p(D|H
i
) is the 

likelihood, the conditional probability that D would be 
observed assuming that H

i
 is true. The formula states that 

the posterior probability is proportional to the product of 
the prior probability and the likelihood. In most of the 
models that we discuss in this article, the “data” are infor-
mation available to a human reasoner, the “priors” are a 
characterization of the reasoner’s initial state of knowl-
edge, and the “hypotheses” are the conclusions that he or 
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One Way to View It

P(H | D)  
…proportional to…

P(D | H)  

H = Chomsky
D = male

P(H)  

the probability the random person
is Chomsky given that person is male…

…the probability that you’d
see a male given it is Chomsky…

…weighted by how probable
Chomsky is in the first place!

One Way to View It

P(H | D)  
…proportional to…

P(D | H)  

H = rain
D = January

P(H)  

the probability there is rain
given that it’s January…

…the probability that
it is January given that
it’s raining…

…weighted by how probable
raining is in the first place!
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In practice it’s a bit more complicated… First, an Example
Beautiful paper by Frank & Goodman, 2012

Predicting Pragmatic Reasoning
in Language Games
Michael C. Frank* and Noah D. Goodman

One of the most astonishing features of
human language is its ability to convey
information efficiently in context. Each

utterance need not carry every detail; in-
stead, listeners can infer speakers’ intended
meanings by assuming utterances convey
only relevant information. These commu-
nicative inferences rely on the shared as-
sumption that speakers are informative, but
not more so than is necessary given the
communicators’ common knowledge and
the task at hand. Many theories provide
high-level accounts of these kinds of in-
ferences (1–3), yet, perhaps because of the
difficulty of formalizing notions like “in-
formativeness” or “common knowledge,”
there have been few successes in making
quantitative predictions about pragmatic
inference in context.

We addressed this issue by studying
simple referential communication games,
like those described by Wittgenstein (4).
Participants see a set of objects and are
asked to bet which one is being referred to
by a particular word. We modeled human
behavior by assuming that a listener can
use Bayesian inference to recover a speak-
er’s intended referent rS in contextC, given
that the speaker uttered word w:

Pðrsjw,CÞ ¼
Pðwjrs,CÞPðrsÞ
∑
r′∈C

Pðwjr′,CÞPðr′Þ ð1Þ

This expression is the product of three
terms: the prior probability P(rS) that an
object would be referred to; the likelihood
P(w|rS,C) that the speaker would utter a particular
word to refer to the object; and the normalizing
constant, a sum of these terms computed for all
referents in the context.

We defined the prior probability of referring
to an object as its contextual salience. This term
picks out not just perceptually but also socially
and conversationally salient objects, capturing
the common knowledge that speaker and listener
share, as it affects the communication game.
Because there is no a priori method for comput-
ing this sort of salience, we instead measured it
empirically (5).

The likelihood term in our model is defined
by the assumption that speakers choose words to
be informative in context. We quantified the in-

formativeness of a word by its surprisal, an
information-theoretic measure of how much it
reduces uncertainty about the referent. By as-
suming a rational actor model of the speaker,
with utility defined in terms of surprisal, we can
derive the regularity that speakers should choose
words proportional to their specificity (6, 7):

Pðwjrs,CÞ ¼
jwj−1

∑
w′∈W

jw′j−1
ð2Þ

where |w| indicates the number of objects to
which word w could apply and W indicates the
set of words that apply to the speaker’s intended
referent.

In our experiment, three groups of partic-
ipants each saw communicative contexts consist-
ing of sets of objects varying on two dimensions
(Fig. 1A). We systematically varied the distribu-

tion of features on these dimensions. To min-
imize the effects of particular configurations or
features, we randomized all other aspects of
the objects for each participant. The first group
(speaker condition) bet on which word a speaker
would use to describe a particular object, testing
the likelihood portion of our model. The second
group (salience condition) was told that a speaker
had used an unknown word to refer to one of the
objects and was asked to bet which object was
being talked about, providing an empirical mea-
sure of the prior in our model. The third group

(listener condition) was told that a speaker
had used a single word (e.g., “blue”) and
again asked to bet on objects, testing the
posterior predictions of our model.

Mean bets in the speaker condition were
highly correlated with our model’s predic-
tions for informative speakers (r = 0.98, P <
0.001; Fig. 1B, open circles). Judgments in
the salience and listener conditions were not
themselves correlated with one another (r =
0.19, P = 0.40), but when salience and in-
formativeness terms were combined via our
model, the result was highly correlated with
listener judgments (r = 0.99, P < 0.0001, Fig.
1B, solid circles). This correlation remained
highly significant when predictions of 0 and
100 were removed (r = 0.87, P < 0.0001).
Figure 1C shows model calculations for
one arrangement of objects.

Our simple model synthesizes and ex-
tends work on human communication from
a number of different traditions, including ear-
ly disambiguation models (8), game-theoretic
signaling models (9), and systems for gen-
erating referring expressions (10). The com-
bination of an information-theoretic definition
of “informativeness” along with empirical
measurements of common knowledge en-
ables us to capture some of the richness of
human pragmatic inference in context.
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Fig. 1. (A) An example stimulus from our experiment, with
instructions for speaker, listener, and salience conditions. (B)
Human bets on the probability of a choosing a term (speaker
condition,N= 206) or referring to an object (listener condition,
N = 263), plotted by model predictions. Points represent mean
bets for particular terms and objects for each context type. The
red line shows the best linear fit to all data. (C) An example
calculation in our model for the context type shown in (A).
Empirical data from the salience condition constitute the prior
term, N = 20 (top); this is multiplied by the model-derived
likelihood term (middle). The resulting posterior model pre-
dictions (normalization step not shown) are plotted alongside
human data from the listener condition, N = 24 (bottom). All
error bars show 95% confidence intervals.
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One of the most astonishing features of
human language is its ability to convey
information efficiently in context. Each

utterance need not carry every detail; in-
stead, listeners can infer speakers’ intended
meanings by assuming utterances convey
only relevant information. These commu-
nicative inferences rely on the shared as-
sumption that speakers are informative, but
not more so than is necessary given the
communicators’ common knowledge and
the task at hand. Many theories provide
high-level accounts of these kinds of in-
ferences (1–3), yet, perhaps because of the
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formativeness” or “common knowledge,”
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quantitative predictions about pragmatic
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We addressed this issue by studying
simple referential communication games,
like those described by Wittgenstein (4).
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share, as it affects the communication game.
Because there is no a priori method for comput-
ing this sort of salience, we instead measured it
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by the assumption that speakers choose words to
be informative in context. We quantified the in-

formativeness of a word by its surprisal, an
information-theoretic measure of how much it
reduces uncertainty about the referent. By as-
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derive the regularity that speakers should choose
words proportional to their specificity (6, 7):
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where |w| indicates the number of objects to
which word w could apply and W indicates the
set of words that apply to the speaker’s intended
referent.

In our experiment, three groups of partic-
ipants each saw communicative contexts consist-
ing of sets of objects varying on two dimensions
(Fig. 1A). We systematically varied the distribu-

tion of features on these dimensions. To min-
imize the effects of particular configurations or
features, we randomized all other aspects of
the objects for each participant. The first group
(speaker condition) bet on which word a speaker
would use to describe a particular object, testing
the likelihood portion of our model. The second
group (salience condition) was told that a speaker
had used an unknown word to refer to one of the
objects and was asked to bet which object was
being talked about, providing an empirical mea-
sure of the prior in our model. The third group

(listener condition) was told that a speaker
had used a single word (e.g., “blue”) and
again asked to bet on objects, testing the
posterior predictions of our model.

Mean bets in the speaker condition were
highly correlated with our model’s predic-
tions for informative speakers (r = 0.98, P <
0.001; Fig. 1B, open circles). Judgments in
the salience and listener conditions were not
themselves correlated with one another (r =
0.19, P = 0.40), but when salience and in-
formativeness terms were combined via our
model, the result was highly correlated with
listener judgments (r = 0.99, P < 0.0001, Fig.
1B, solid circles). This correlation remained
highly significant when predictions of 0 and
100 were removed (r = 0.87, P < 0.0001).
Figure 1C shows model calculations for
one arrangement of objects.
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tends work on human communication from
a number of different traditions, including ear-
ly disambiguation models (8), game-theoretic
signaling models (9), and systems for gen-
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One of the most astonishing features of
human language is its ability to convey
information efficiently in context. Each

utterance need not carry every detail; in-
stead, listeners can infer speakers’ intended
meanings by assuming utterances convey
only relevant information. These commu-
nicative inferences rely on the shared as-
sumption that speakers are informative, but
not more so than is necessary given the
communicators’ common knowledge and
the task at hand. Many theories provide
high-level accounts of these kinds of in-
ferences (1–3), yet, perhaps because of the
difficulty of formalizing notions like “in-
formativeness” or “common knowledge,”
there have been few successes in making
quantitative predictions about pragmatic
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We addressed this issue by studying
simple referential communication games,
like those described by Wittgenstein (4).
Participants see a set of objects and are
asked to bet which one is being referred to
by a particular word. We modeled human
behavior by assuming that a listener can
use Bayesian inference to recover a speak-
er’s intended referent rS in contextC, given
that the speaker uttered word w:
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This expression is the product of three
terms: the prior probability P(rS) that an
object would be referred to; the likelihood
P(w|rS,C) that the speaker would utter a particular
word to refer to the object; and the normalizing
constant, a sum of these terms computed for all
referents in the context.

We defined the prior probability of referring
to an object as its contextual salience. This term
picks out not just perceptually but also socially
and conversationally salient objects, capturing
the common knowledge that speaker and listener
share, as it affects the communication game.
Because there is no a priori method for comput-
ing this sort of salience, we instead measured it
empirically (5).

The likelihood term in our model is defined
by the assumption that speakers choose words to
be informative in context. We quantified the in-

formativeness of a word by its surprisal, an
information-theoretic measure of how much it
reduces uncertainty about the referent. By as-
suming a rational actor model of the speaker,
with utility defined in terms of surprisal, we can
derive the regularity that speakers should choose
words proportional to their specificity (6, 7):

Pðwjrs,CÞ ¼
jwj−1

∑
w′∈W

jw′j−1
ð2Þ

where |w| indicates the number of objects to
which word w could apply and W indicates the
set of words that apply to the speaker’s intended
referent.

In our experiment, three groups of partic-
ipants each saw communicative contexts consist-
ing of sets of objects varying on two dimensions
(Fig. 1A). We systematically varied the distribu-

tion of features on these dimensions. To min-
imize the effects of particular configurations or
features, we randomized all other aspects of
the objects for each participant. The first group
(speaker condition) bet on which word a speaker
would use to describe a particular object, testing
the likelihood portion of our model. The second
group (salience condition) was told that a speaker
had used an unknown word to refer to one of the
objects and was asked to bet which object was
being talked about, providing an empirical mea-
sure of the prior in our model. The third group

(listener condition) was told that a speaker
had used a single word (e.g., “blue”) and
again asked to bet on objects, testing the
posterior predictions of our model.

Mean bets in the speaker condition were
highly correlated with our model’s predic-
tions for informative speakers (r = 0.98, P <
0.001; Fig. 1B, open circles). Judgments in
the salience and listener conditions were not
themselves correlated with one another (r =
0.19, P = 0.40), but when salience and in-
formativeness terms were combined via our
model, the result was highly correlated with
listener judgments (r = 0.99, P < 0.0001, Fig.
1B, solid circles). This correlation remained
highly significant when predictions of 0 and
100 were removed (r = 0.87, P < 0.0001).
Figure 1C shows model calculations for
one arrangement of objects.

Our simple model synthesizes and ex-
tends work on human communication from
a number of different traditions, including ear-
ly disambiguation models (8), game-theoretic
signaling models (9), and systems for gen-
erating referring expressions (10). The com-
bination of an information-theoretic definition
of “informativeness” along with empirical
measurements of common knowledge en-
ables us to capture some of the richness of
human pragmatic inference in context.
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Fig. 1. (A) An example stimulus from our experiment, with
instructions for speaker, listener, and salience conditions. (B)
Human bets on the probability of a choosing a term (speaker
condition,N= 206) or referring to an object (listener condition,
N = 263), plotted by model predictions. Points represent mean
bets for particular terms and objects for each context type. The
red line shows the best linear fit to all data. (C) An example
calculation in our model for the context type shown in (A).
Empirical data from the salience condition constitute the prior
term, N = 20 (top); this is multiplied by the model-derived
likelihood term (middle). The resulting posterior model pre-
dictions (normalization step not shown) are plotted alongside
human data from the listener condition, N = 24 (bottom). All
error bars show 95% confidence intervals.
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Predicting Pragmatic Reasoning
in Language Games
Michael C. Frank* and Noah D. Goodman

One of the most astonishing features of
human language is its ability to convey
information efficiently in context. Each

utterance need not carry every detail; in-
stead, listeners can infer speakers’ intended
meanings by assuming utterances convey
only relevant information. These commu-
nicative inferences rely on the shared as-
sumption that speakers are informative, but
not more so than is necessary given the
communicators’ common knowledge and
the task at hand. Many theories provide
high-level accounts of these kinds of in-
ferences (1–3), yet, perhaps because of the
difficulty of formalizing notions like “in-
formativeness” or “common knowledge,”
there have been few successes in making
quantitative predictions about pragmatic
inference in context.

We addressed this issue by studying
simple referential communication games,
like those described by Wittgenstein (4).
Participants see a set of objects and are
asked to bet which one is being referred to
by a particular word. We modeled human
behavior by assuming that a listener can
use Bayesian inference to recover a speak-
er’s intended referent rS in contextC, given
that the speaker uttered word w:

Pðrsjw,CÞ ¼
Pðwjrs,CÞPðrsÞ
∑
r′∈C

Pðwjr′,CÞPðr′Þ ð1Þ

This expression is the product of three
terms: the prior probability P(rS) that an
object would be referred to; the likelihood
P(w|rS,C) that the speaker would utter a particular
word to refer to the object; and the normalizing
constant, a sum of these terms computed for all
referents in the context.

We defined the prior probability of referring
to an object as its contextual salience. This term
picks out not just perceptually but also socially
and conversationally salient objects, capturing
the common knowledge that speaker and listener
share, as it affects the communication game.
Because there is no a priori method for comput-
ing this sort of salience, we instead measured it
empirically (5).

The likelihood term in our model is defined
by the assumption that speakers choose words to
be informative in context. We quantified the in-

formativeness of a word by its surprisal, an
information-theoretic measure of how much it
reduces uncertainty about the referent. By as-
suming a rational actor model of the speaker,
with utility defined in terms of surprisal, we can
derive the regularity that speakers should choose
words proportional to their specificity (6, 7):

Pðwjrs,CÞ ¼
jwj−1

∑
w′∈W

jw′j−1
ð2Þ

where |w| indicates the number of objects to
which word w could apply and W indicates the
set of words that apply to the speaker’s intended
referent.

In our experiment, three groups of partic-
ipants each saw communicative contexts consist-
ing of sets of objects varying on two dimensions
(Fig. 1A). We systematically varied the distribu-

tion of features on these dimensions. To min-
imize the effects of particular configurations or
features, we randomized all other aspects of
the objects for each participant. The first group
(speaker condition) bet on which word a speaker
would use to describe a particular object, testing
the likelihood portion of our model. The second
group (salience condition) was told that a speaker
had used an unknown word to refer to one of the
objects and was asked to bet which object was
being talked about, providing an empirical mea-
sure of the prior in our model. The third group

(listener condition) was told that a speaker
had used a single word (e.g., “blue”) and
again asked to bet on objects, testing the
posterior predictions of our model.

Mean bets in the speaker condition were
highly correlated with our model’s predic-
tions for informative speakers (r = 0.98, P <
0.001; Fig. 1B, open circles). Judgments in
the salience and listener conditions were not
themselves correlated with one another (r =
0.19, P = 0.40), but when salience and in-
formativeness terms were combined via our
model, the result was highly correlated with
listener judgments (r = 0.99, P < 0.0001, Fig.
1B, solid circles). This correlation remained
highly significant when predictions of 0 and
100 were removed (r = 0.87, P < 0.0001).
Figure 1C shows model calculations for
one arrangement of objects.

Our simple model synthesizes and ex-
tends work on human communication from
a number of different traditions, including ear-
ly disambiguation models (8), game-theoretic
signaling models (9), and systems for gen-
erating referring expressions (10). The com-
bination of an information-theoretic definition
of “informativeness” along with empirical
measurements of common knowledge en-
ables us to capture some of the richness of
human pragmatic inference in context.
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Fig. 1. (A) An example stimulus from our experiment, with
instructions for speaker, listener, and salience conditions. (B)
Human bets on the probability of a choosing a term (speaker
condition,N= 206) or referring to an object (listener condition,
N = 263), plotted by model predictions. Points represent mean
bets for particular terms and objects for each context type. The
red line shows the best linear fit to all data. (C) An example
calculation in our model for the context type shown in (A).
Empirical data from the salience condition constitute the prior
term, N = 20 (top); this is multiplied by the model-derived
likelihood term (middle). The resulting posterior model pre-
dictions (normalization step not shown) are plotted alongside
human data from the listener condition, N = 24 (bottom). All
error bars show 95% confidence intervals.
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Predicting Pragmatic Reasoning
in Language Games
Michael C. Frank* and Noah D. Goodman

One of the most astonishing features of
human language is its ability to convey
information efficiently in context. Each

utterance need not carry every detail; in-
stead, listeners can infer speakers’ intended
meanings by assuming utterances convey
only relevant information. These commu-
nicative inferences rely on the shared as-
sumption that speakers are informative, but
not more so than is necessary given the
communicators’ common knowledge and
the task at hand. Many theories provide
high-level accounts of these kinds of in-
ferences (1–3), yet, perhaps because of the
difficulty of formalizing notions like “in-
formativeness” or “common knowledge,”
there have been few successes in making
quantitative predictions about pragmatic
inference in context.

We addressed this issue by studying
simple referential communication games,
like those described by Wittgenstein (4).
Participants see a set of objects and are
asked to bet which one is being referred to
by a particular word. We modeled human
behavior by assuming that a listener can
use Bayesian inference to recover a speak-
er’s intended referent rS in contextC, given
that the speaker uttered word w:

Pðrsjw,CÞ ¼
Pðwjrs,CÞPðrsÞ
∑
r′∈C

Pðwjr′,CÞPðr′Þ ð1Þ

This expression is the product of three
terms: the prior probability P(rS) that an
object would be referred to; the likelihood
P(w|rS,C) that the speaker would utter a particular
word to refer to the object; and the normalizing
constant, a sum of these terms computed for all
referents in the context.

We defined the prior probability of referring
to an object as its contextual salience. This term
picks out not just perceptually but also socially
and conversationally salient objects, capturing
the common knowledge that speaker and listener
share, as it affects the communication game.
Because there is no a priori method for comput-
ing this sort of salience, we instead measured it
empirically (5).

The likelihood term in our model is defined
by the assumption that speakers choose words to
be informative in context. We quantified the in-

formativeness of a word by its surprisal, an
information-theoretic measure of how much it
reduces uncertainty about the referent. By as-
suming a rational actor model of the speaker,
with utility defined in terms of surprisal, we can
derive the regularity that speakers should choose
words proportional to their specificity (6, 7):

Pðwjrs,CÞ ¼
jwj−1

∑
w′∈W

jw′j−1
ð2Þ

where |w| indicates the number of objects to
which word w could apply and W indicates the
set of words that apply to the speaker’s intended
referent.

In our experiment, three groups of partic-
ipants each saw communicative contexts consist-
ing of sets of objects varying on two dimensions
(Fig. 1A). We systematically varied the distribu-

tion of features on these dimensions. To min-
imize the effects of particular configurations or
features, we randomized all other aspects of
the objects for each participant. The first group
(speaker condition) bet on which word a speaker
would use to describe a particular object, testing
the likelihood portion of our model. The second
group (salience condition) was told that a speaker
had used an unknown word to refer to one of the
objects and was asked to bet which object was
being talked about, providing an empirical mea-
sure of the prior in our model. The third group

(listener condition) was told that a speaker
had used a single word (e.g., “blue”) and
again asked to bet on objects, testing the
posterior predictions of our model.

Mean bets in the speaker condition were
highly correlated with our model’s predic-
tions for informative speakers (r = 0.98, P <
0.001; Fig. 1B, open circles). Judgments in
the salience and listener conditions were not
themselves correlated with one another (r =
0.19, P = 0.40), but when salience and in-
formativeness terms were combined via our
model, the result was highly correlated with
listener judgments (r = 0.99, P < 0.0001, Fig.
1B, solid circles). This correlation remained
highly significant when predictions of 0 and
100 were removed (r = 0.87, P < 0.0001).
Figure 1C shows model calculations for
one arrangement of objects.

Our simple model synthesizes and ex-
tends work on human communication from
a number of different traditions, including ear-
ly disambiguation models (8), game-theoretic
signaling models (9), and systems for gen-
erating referring expressions (10). The com-
bination of an information-theoretic definition
of “informativeness” along with empirical
measurements of common knowledge en-
ables us to capture some of the richness of
human pragmatic inference in context.

References and Notes
1. H. Grice, in Syntax and Semantics, P. Cole, J. Morgan, Eds.

(Academic Press, New York, 1975), vol. 3, pp. 41–58.
2. D. Sperber, D. Wilson, Relevance: Communication and

Cognition (Harvard Univ. Press, Cambridge, MA, 1986).
3. H. Clark, Using Language (Cambridge Univ. Press,

Cambridge, 1996).
4. L. Wittgenstein, Philosophical Investigations (Blackwell,

Oxford, 1953).
5. H. Clark, R. Schreuder, S. Buttrick, J. Verbal Learn. Verbal

Behav. 22, 245 (1983).
6. Materials and methods are available as supplementary

materials on Science Online.
7. F. Xu, J. B. Tenenbaum, Psychol. Rev. 114, 245 (2007).
8. S. Rosenberg, B. D. Cohen, Science 145, 1201 (1964).
9. A. Benz, G. Jäger, R. Van Rooij, Eds., Game Theory and

Pragmatics (Palgrave Macmillan, Hampshire, UK, 2005).
10. R. Dale, E. Reiter, Cogn. Sci. 19, 233 (1995).

Supplementary Materials
www.sciencemag.org/cgi/content/full/336/6084/998/DC1
Materials and Methods
Supplementary Text

3 January 2012; accepted 10 April 2012
10.1126/science.1218633

BREVIA

Department of Psychology, Stanford University, Stanford,
CA 94305, USA.

*To whom correspondence should be addressed. E-mail:
mcfrank@stanford.edu

0 20 40 60 80 100

0
20

40
60

80
10

0

Model predictions

P
ar

tic
ip

an
t b

et
s

listener
speaker

Listener/Salience: Imagine someone is 
talking to you and uses [the word “blue”/a 
word you don’t know] to refer to one of 
these objects. Which object are they 
talking about?

A

B

CSpeaker: Imagine you are talking to 
someone and you want to refer to the 
middle object. Which word would you use, 
“blue” or “circle”?

1 2 3

0
20

40
60

Prior: Salience Condition

B
et

1 2 3

0
20

40
60

Likelihood: Model 
Predictions

B
et

1 2 3

0
20

40
60

Posterior: Model vs. 
Listener Condition

B
et

data
model

×

=

1 2 3

1 2 3

Fig. 1. (A) An example stimulus from our experiment, with
instructions for speaker, listener, and salience conditions. (B)
Human bets on the probability of a choosing a term (speaker
condition,N= 206) or referring to an object (listener condition,
N = 263), plotted by model predictions. Points represent mean
bets for particular terms and objects for each context type. The
red line shows the best linear fit to all data. (C) An example
calculation in our model for the context type shown in (A).
Empirical data from the salience condition constitute the prior
term, N = 20 (top); this is multiplied by the model-derived
likelihood term (middle). The resulting posterior model pre-
dictions (normalization step not shown) are plotted alongside
human data from the listener condition, N = 24 (bottom). All
error bars show 95% confidence intervals.
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Predicting Pragmatic Reasoning
in Language Games
Michael C. Frank* and Noah D. Goodman

One of the most astonishing features of
human language is its ability to convey
information efficiently in context. Each

utterance need not carry every detail; in-
stead, listeners can infer speakers’ intended
meanings by assuming utterances convey
only relevant information. These commu-
nicative inferences rely on the shared as-
sumption that speakers are informative, but
not more so than is necessary given the
communicators’ common knowledge and
the task at hand. Many theories provide
high-level accounts of these kinds of in-
ferences (1–3), yet, perhaps because of the
difficulty of formalizing notions like “in-
formativeness” or “common knowledge,”
there have been few successes in making
quantitative predictions about pragmatic
inference in context.

We addressed this issue by studying
simple referential communication games,
like those described by Wittgenstein (4).
Participants see a set of objects and are
asked to bet which one is being referred to
by a particular word. We modeled human
behavior by assuming that a listener can
use Bayesian inference to recover a speak-
er’s intended referent rS in contextC, given
that the speaker uttered word w:

Pðrsjw,CÞ ¼
Pðwjrs,CÞPðrsÞ
∑
r′∈C

Pðwjr′,CÞPðr′Þ ð1Þ

This expression is the product of three
terms: the prior probability P(rS) that an
object would be referred to; the likelihood
P(w|rS,C) that the speaker would utter a particular
word to refer to the object; and the normalizing
constant, a sum of these terms computed for all
referents in the context.

We defined the prior probability of referring
to an object as its contextual salience. This term
picks out not just perceptually but also socially
and conversationally salient objects, capturing
the common knowledge that speaker and listener
share, as it affects the communication game.
Because there is no a priori method for comput-
ing this sort of salience, we instead measured it
empirically (5).

The likelihood term in our model is defined
by the assumption that speakers choose words to
be informative in context. We quantified the in-

formativeness of a word by its surprisal, an
information-theoretic measure of how much it
reduces uncertainty about the referent. By as-
suming a rational actor model of the speaker,
with utility defined in terms of surprisal, we can
derive the regularity that speakers should choose
words proportional to their specificity (6, 7):

Pðwjrs,CÞ ¼
jwj−1

∑
w′∈W

jw′j−1
ð2Þ

where |w| indicates the number of objects to
which word w could apply and W indicates the
set of words that apply to the speaker’s intended
referent.

In our experiment, three groups of partic-
ipants each saw communicative contexts consist-
ing of sets of objects varying on two dimensions
(Fig. 1A). We systematically varied the distribu-

tion of features on these dimensions. To min-
imize the effects of particular configurations or
features, we randomized all other aspects of
the objects for each participant. The first group
(speaker condition) bet on which word a speaker
would use to describe a particular object, testing
the likelihood portion of our model. The second
group (salience condition) was told that a speaker
had used an unknown word to refer to one of the
objects and was asked to bet which object was
being talked about, providing an empirical mea-
sure of the prior in our model. The third group

(listener condition) was told that a speaker
had used a single word (e.g., “blue”) and
again asked to bet on objects, testing the
posterior predictions of our model.

Mean bets in the speaker condition were
highly correlated with our model’s predic-
tions for informative speakers (r = 0.98, P <
0.001; Fig. 1B, open circles). Judgments in
the salience and listener conditions were not
themselves correlated with one another (r =
0.19, P = 0.40), but when salience and in-
formativeness terms were combined via our
model, the result was highly correlated with
listener judgments (r = 0.99, P < 0.0001, Fig.
1B, solid circles). This correlation remained
highly significant when predictions of 0 and
100 were removed (r = 0.87, P < 0.0001).
Figure 1C shows model calculations for
one arrangement of objects.

Our simple model synthesizes and ex-
tends work on human communication from
a number of different traditions, including ear-
ly disambiguation models (8), game-theoretic
signaling models (9), and systems for gen-
erating referring expressions (10). The com-
bination of an information-theoretic definition
of “informativeness” along with empirical
measurements of common knowledge en-
ables us to capture some of the richness of
human pragmatic inference in context.
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Fig. 1. (A) An example stimulus from our experiment, with
instructions for speaker, listener, and salience conditions. (B)
Human bets on the probability of a choosing a term (speaker
condition,N= 206) or referring to an object (listener condition,
N = 263), plotted by model predictions. Points represent mean
bets for particular terms and objects for each context type. The
red line shows the best linear fit to all data. (C) An example
calculation in our model for the context type shown in (A).
Empirical data from the salience condition constitute the prior
term, N = 20 (top); this is multiplied by the model-derived
likelihood term (middle). The resulting posterior model pre-
dictions (normalization step not shown) are plotted alongside
human data from the listener condition, N = 24 (bottom). All
error bars show 95% confidence intervals.
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Next Week
• What to do? 

• Final paper 

• Applied issues…  
  careers!

LSA
LIWC

NNs

Culturomics
Neurosynth

RT

Thought Exp’s

Bayes


