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Chapter 2: Historical and Philosophical Context

In this chapter I give a brief historical overview of connectionism, then describe
philosophical differences between connectionism and its main rival (at least until
recently): symbolic artificial intelligence.

1 A brief history of connectionism

1.1 Ancient roots

Cognitive science, the interdisciplinary study of mind, has ancient roots. In
the Western tradition, Plato, Aristotle, and other Greek philosophers had an
interest in the structure of the human mindor “soul” in relation to physical
processes in the body. Plato and Aristotle both described the soul as a set of
interacting faculties (in Plato: reason, spirit, and appetite), and both speculated
about its physical basis. They disagreed about whether the brain or heart is the
physical basis of the soul (Aristotle thought the brain just cooled the blood),
but by the end of the Classical period the brain was generally thought to be the
physical basis of the mind.

1.2 The Medieval Period

The question of how the mind arises from the brain was subsequently taken up
by medieval thinkers, who believed cognition was based on the play of “spir-
its” or vapors in the ventricles of the brain. Spirits originating in the senses
were combined in the “common sense” and then purified, and mixed in higher
ventricles. A typical diagram from the period is shown in figure 1. Today the
ventricles are believed to be shock-absorbers and chemical reservoirs, and are
not thought to play a central functional role in cognition. However, the idea that
sensory inputs to the brain are combined and refined in various ways persists in
connectionist models.
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Figure 1: A medieval diagram which shows how spirits were thought to flow in
the ventricles of the brain. From Grüsser, 1990.

1.3 The Enlightenment

During the Enlightenment, various thinkers proposed that connections between
ideas in the mind are based on connections between fibers in the brain.1 For
example, in the 1700’s Locke famously claimed that ideas in the mind result from
associations between simple sensory ideas: for example, a percept of an apple
is composed out simple sensations corresponding to its color, shape, smell, and
taste. Several thinkers after Locke, including Hartley and later, Bain, thought
that Locke’s theory could be explained by laws describing connections between
neurons in the brain. A diagram from Bain is shown in figure 2.2

Figure 2: From Bain, 1873

1Neurons had not yet been identified as distinct structures.
2For more on this period of history, see Sutton (1998).
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1.4 Twentieth Century

In the early part of the 20th century a movement which anticipated connection-
ism was cybernetics, “the science of control and communication in the animal
and the machine” (Wiener, 16). Early cybernetics was fueled by industry and
war. In the late 1930s the petroleum industry developed central control systems
to maintain refinery towers. These feedback systems were pressed into military
service during WWII, when engineers were asked to design more efficient mech-
anisms for controlling anti-aircraft guns. Before long, these engineering tech-
niques were applied to the study of mind. It was realized that feedback based
circuits could coordinate complex movement, both in engineered systems and
in the brain.

In the 1940’s Warren McCulloch (a neurophysiologist affiliated with cyber-
netics) and Walter Pitts (a logician) famously showed how neuron-like elements,
operating in parallel, could perform all the logical operations performed by com-
puters. This in turn implies that whatever can be done on a computer can, in
principle, be done using neurons. A diagram from one of McCulloch’s papers is
shown in figure 3.

Figure 3: From McCulloch, 1960.

Another important figure in this period was Donald Hebb, sometimes called
the father of connectionism. Hebb was a psychologist who formulated a famous
learning rule for weights, the “Hebb rule” (“neurons that fire together, wire
together”), and who explicitly thought about the operation of the brain in terms
of networks of connected neurons. In particular, he formulated the concept of
a “cell assembly”, a groups of neurons that become associated over time and
thereafter tend to reverberate in response to a stimulus (figure 4 shows one of
Hebb’s own diagrams of a cell asembly).

Connectionism in its present form developed in the context of the early “cog-
nitive revolution”, which in turn led to what is today called “cognitive science”.
The cognitive revolution is sometimes traced to one of several conferences in the
1950s, including a conference held at MIT in 1956, the Symposium on Informa-
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Figure 4: A Hebbian cell assembly.

tion Theory:

Three talks in particular, Miller’s ‘The magical number seven’, Chom-
sky’s ‘Three models of language’, and Newell and Simon’s ‘Logic
theory machine’, have been singled out as instrumental in seeding
the cognitive science movement. Following these talks, a perception
began to emerge that “human experimental psychology, theoretical
linguistics, and computer simulations of cognitive processes were all
pieces of a larger whole” (Medler; the embedded quote is from Miller
1979 ).

Conferences like this were in part a response to behaviorism, according to
which psychologists should focus on observable sensory inputs and motor re-
sponses, treating the “mind” as a black box between the inputs and outputs,
that could be ignored. The new cognitive scientists wanted to break open that
black box and look inside: they wanted to understand what kind of processing
occurs between sensory input and motor output. The big idea, the idea that got
everyone excited, was that inside the mind there is an information processing
system, one that can be studied using computer simulations.

This new breed of inter-disciplinary cognitive scientists would, however, split,
according to how they thought the mind processes information. Some thought
(and some still think) that the mind processes information using symbols and
rules, like a regular computer does. This remains a dominant tendency in cogni-
tive science, and it goes by several names: “functionalism”, “Symbolic AI,” and
“Classical AI”, among others. The other camp, the “connectionists”, thought
the mind processes information more like the brain does. Today there are other
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camps as well, and some who mix ideas from both symbolic AI and connection-
ism. We will go into this difference in section 2.

In the 1950’s and 1960’s what would today be recognized as neural network
theory really began. Rosenblatt, Widrow, Hoff, and others showed how simple
networks could learn to recognize patterns using rules they derived mathemat-
ically (more on these rules in a later chapter). In this period some of the first
neural networks were implemented in hardware–for example, Widrow and Hoff
created a neural network architecture called “Adaline”. In the hardware imple-
mentation shown in figure 5, the knobs are input neurons, the toggle switches
are synapses (which can only be on or off), and the dial shows the activation of
an output neuron.

Figure 5: Adaline. A 2-layer network, with 12 input nodes, and one output
node

Another important figure in the 1950’s and 1960’s was the psychologist Oliver
Selfridge, who pioneered the idea that psychological processes can be broken
down in to smaller process. His Pandemonium theory described the mind as a
collection of sub-processes or “demons”, each of which takes care of one specific
aspect of a task. For example, figure 6 shows how Selfridge thought of the
process of perceiving the letter “B”. An image arrives at the eye, line demons
detect lines in various orientations, and those demons send messages to angle
demons who detect angles, and the process continues through a network of
demons until a decision demon says “B!”

In the late 1960’s and early 1970’s, the symbolic AI model of cognition was
dominant. Moreover, simple neural networks like the ones studied by Rosenblatt
(simple 2-layer networks) were shown to suffer certain fundamental limitations.
For these and other reasons, neural networks were relatively unpopular in this
period. In fact, these have been called the “dark ages” of connectionism, though
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Figure 6: Selfridge’s pandemonium model.

it was only a decade or so, and lots of good stuff happened during that decade.3

Connectionism came out of its dark decade and enjoyed a resurgence in the
1980s, for several reasons, including the discovery of the backpropagation al-
gorithm, which addressed the problems that affected earlier networks, and the
emergence of a number of limitations associated with classical AI. The resur-
gence was also helped by the publication of a major two-volume work in the
period, Parallel Distributed Processing: Adventures in the Microstructure of
Cognition, in 1986, by David Rumelhart, James MClelland, and the “PDP re-
search group” (a group of researchers, many of whom were at UC San Diego.)
This publication brought connectionist networks back to the forefront, by clearly
articulating the connectionist standpoint, showcasing a number of models of var-
ious aspects of cognition, and clarifying how connectionist networks differ from
symbolic AI models.

2 Symbolic AI vs. Connectionism

As noted above, soon after the emergence of early cognitive science, a split de-
veloped between those who de-emphasized the brain (symbolic AI researchers),
focusing instead on the AI / computer model of mind, and those (connection-
ists) who emphasized brain-like aspects of cognitive processing. Let us consider
the contrast in more detail, by considering three assumptions of each approach.

Three basic assumptions of symbolic AI are that:
3For more on the work done in this period see PDP vol 1, ch. 1.
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1) Neuroscience is not important for the study of cognition. Ac-
cording to this view, what matters to cognitive science is the formal
structure of cognition, not “implementation” details concerning the
brain. As it was sometimes put, “the mind is to the brain as soft-
ware is to hardware”, or “ the mind is software running in the brain”.
Compare a computer program like Photoshop. Someone who wanted
to know how Photoshop works would care about its high-level source
code, but not about the physical transistors in the computer. On
this view, what matters is high-level formal structure, not low-level
neural details.

2) Mental representations are symbol structures with a linguistic
form. On this view, the mind is a computer program written in
a kind of language, the “language of thought” (sometimes called
“mentalese”). Mental processes correspond to operations on these
symbol structures. This implies that the basic units of thinking are
discrete linguistic units which get pieced together into more com-
plex representations: for example, my thought that the computer is
in front of me is a sentence in my mind, made out of discrete parts
like “computer” and “front”.

3) Thinking involves applying explicit rules to symbolic structures.
For example, two minutes from now I can think “that computer
was in front of me” by changing the tense of the verb “is” using a
rule-based transformation “is” > “was”. So while the elements of
thought are symbol structures, the process of thinking consists in
applying explicit rules to those structures.4

Connectionism has been put forward as an alternative to symbolic AI. Three
fundamental assumptions of connectionism, which contrast with those of sym-
bolic AI, are as follows:

1) Neuroscience is essential to studying cognition. To understand
the mind we need to understand the brain, and should use brain-
like models.

2) Mental representations correspond to patterns of activity across
many nodes. Mental representations correspond to patterns of ac-
tivity over millions of nodes, rather than language-like symbol struc-
tures.

4This is a somewhat simplistic way of describing Classical AI, and some who endorse it, or
something like it, would not say things this way. My purpose is to set up a first-pass, strong
contrast.
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3) Thinking involves transforming patterns of activity by patterns
of connections. On this view, thinking involves the changes that
occur as neural activity passes through complex webs of synaptic
connections.

So, whereas for symbolic AI the mind is a like a computer, programmed
with rules which operate on symbolically structured representations, for con-
nectionism the mind is like the brain, transforming patterns of neural activity
via complex webs of synaptic connections.

This division is not as sharp as it used to be, and many today use both kinds
of model, or hybrid models (more below).

Having seen the general division between symbolic AI and connectionism, let
us describe special features of neural networks that have been taken to demon-
strate their advantages relative to classical symbol systems.

2.1 Neural Networks Operate in Parallel

Whereas digital computers normally do things one at a time, neural networks
do a lot of things at the same time. Digital computers perform computations
in serial, while neural networks perform computations in parallel. To see the
difference, consider a simple problem: finding which of ten cups has a bean
under it. A serial approach would lift each cup up, one at a time, until the bean
was found. A parallel approach would lift all ten cups up at once.

Parallel computation is clearly faster. So, why not do everything in parallel?
The answer, roughly, is that the whole theory of digital computation assumes
a core level of serial processing. To implement a basic algorithm assumes that
things happen in a well-ordered fashion. Techniques for parallel computation
exist, and are emerging as an important area of computer science, but even
in those cases tasks are broken down into sub-tasks each of which can be run
in serial. Moreover, serial computers are fast these days. For example, the
computer I’m writing this on performs several billion operations per second.
With numbers like those we can tolerate the processing slow-down due to serial
processing.

On the other hand, massively parallel processors like the brain are messy,
they make mistakes. They are not as good as computers at performing, e.g.,
complex mathematical computations or looking up names in an index. And they
are made of relatively slow materials. Neurons fire at most 200 times per second.
They are orders of magnitude slower then the transistors on this computer. In
order to solve problems in a reasonable time frame the brain operates in parallel:
every neuron is always doing its own thing. The trade-off is in accuracy: the
brain is a kind of messy computer, which doesn’t always do the same thing
twice. But given the wet, biological stuff we’re made of, it works well enough.

Even though neural networks operate in parallel, many aspects of thinking
are serial. As Rummelhart , McClelland, and Hinton point out:

The process of human cognition, examined on a time scale of sec-
onds and minutes, has a distinctly sequential character to it. Ideas
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come, seem promising, and then are rejected; leads in the solution
to a problem are taken up, then abandoned and replaced with new
ideas... Clearly any useful description of the overall organization of
this sequential flow of thought will necessarily describe a sequence
of states (p. 12).

Does this mean neural networks are really modeling a sequential process? Not
really. Neural networks model the “microstructure” of cognition, what is some-
times called the “sub-symbolic” level of mental processing. Even if it is true that
the overall behavior of our brain–patterns of firing across millions of neurons–
flows from macro-pattern to macro-pattern sequentially, these high level pro-
cesses are somehow grounded in low level processes involving thousands or mil-
lions of parallel computations.

2.2 Neural Networks Gracefully Degrade

Classical, digital computers are “brittle,” in the sense that if a single component
is lost it will probably stop functioning properly. Knock out the microprocessor
in your computer, or snip a few wires, and the whole thing will most likely stop
functioning altogether.

Neural networks, by contrast, gracefully degrade (we discussed this briefly in
chapter 1). If you lose a few neurons and /or synapses, there is a good chance
that the whole system will continue to function well. Of course, if you lose
enough neurons and synapses it will show, but the damage in performance is
generally proportional to the damage to the network. Neural networks degrade
“gracefully.” This is related to the fact that they operate in parallel rather
than serial. While a serial computer needs to have every component linked
up properly to work, a neural network has lots of redundant wiring which can
compensate for damage.

2.3 Neural Networks are Tolerant of Noisy Inputs

Digital computers don’t like noisy input: they respond only to clean, precise
inputs. Anyone who has worked with computers has some understanding of
this. To get through a company’s “phone tree” you have to enter just the right
sequence of numbers–no mistakes allowed! Or, suppose you are looking me up
in a database. If you enter “Joshimi” instead of “Yoshimi” you won’t find me.
You must enter the exact right input to get the right response.5

Neural networks, on the other hand, do quite well with noisy inputs. Just
look at our brains. Show me ten roses, and the exact pattern of stimulation on
my retina will differ. In fact, show me the same rose ten times, and there is sure
to be noise in the pattern produced on my retina. But I see it as a rose every

5Of course Google and other computers can make good guesses, but then they are using
technologies inspired by neural network ideas; they are approximating neural network like
computation in a digital computer.
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time. We will see lots of examples of neural networks which keep chugging along
even though the inputs presented to them are noisy.

In a sense, this is the concept of graceful degradation, applied to inputs
rather than processing components. Brains do well with noisy, “degraded”
inputs, but digital computers generally don’t.

2.4 Neural Networks use Distributed Representations

Mental representations (e.g. your knowledge of your grandmother) can be
thought of in two ways: as being locally stored in one location in the brain,
or as being distributed over many locations. A local representation scheme for
the brain is sometimes called a “grandmother cell” doctrine, because it implies
that there is just one neuron in your brain that represents your grandmother.

In the context of neural networks, we can say that an object P is locally
represented by a neuron when activation of that neuron indicates the presence
of P . For example, in figure 7, blue cheese is locally represented by the neuron
labelled “Center 5”. When that neuron is activated, the blue cheese is present
(here “activation” means having a non-zero, positive activation value).

Figure 7: Localist representation

In contrast, we can say that an object has a distributed representation in
a neural network, when a particular pattern of activation over a set of nodes
indicates the presence of that object. In figure 8, the bottle of poison has a
distributed representation. When the poison is present a specific pattern of
activation (.1, 1, .7, 0, .2) occurs across the whole set of nodes.

For the most part, distributed representations are what one finds in the
brain. Generally speaking brain functions are distributed over many neurons.

Although it is harder to think about distributed representations than about
local representations, we see in another chapter how these patterns can be vi-
sualized as points in a space. This in turn makes it easier to visualize their
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Figure 8: Distributed representation

relations to one another.
Some older types of neural network use only local representations (e.g. the

IAC networks in chapter 1), and we will see that it is sometimes useful to use
local representations. However, the problem with local representations is that
you lose some of the virtues above, in particular graceful degradation. If there
is just one unit whose activation represents my grandmother, then if I lose that
neuron I lose my whole memory of my grandmother. But the empirical evidence
suggests that losing a single neuron will not lead to a person’s losing an entire
memory. So, even if some artificial neural networks use localist schemes to
illustrate certain concepts, biological neural networks don’t seem to.

3 Middle / Hybrid Positions

The split between symbolic AI and connectionism continues to this day: for ex-
ample, even today the role of neuroscience in cognitive science is a controversial
topic. But though I have set up a strong split between AI and connectionism,
there are many today who do both (or work with other types of models, e.g.
Baysean models). In a way it becomes a matter of what level of analysis a
cognitive science researcher works at. If someone is interested in low level per-
ception, a connectionist approach might be better; if someone is interested in
language processing, AI might be better. In the end I think most theorists and
working scientists have an ecumenical attitude: choose whatever model works
best to describe the data you have.
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